
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Developing virtual reality applications: The design
and evaluation of virtual reality development tools
for novice users.
David J. Kabala
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kabala, David J., "Developing virtual reality applications: The design and evaluation of virtual reality development tools for novice
users." (2011). Graduate Theses and Dissertations. 10231.
https://lib.dr.iastate.edu/etd/10231

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10231?utm_source=lib.dr.iastate.edu%2Fetd%2F10231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Developing virtual reality applications:

The design and evaluation of virtual reality development tools for novice users

by

David Kabala

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Human Computer Interaction

Program of Study Committee:
Julie Dickerson, Major Professor

Eve Wurtele
Stephen Gilbert

David Fernández-Baca
Sunghyun Kang

Iowa State University

Ames, Iowa

2011

Copyright c© David Kabala, 2011. All rights reserved.

ii

DEDICATION

For Amber, Mom, Sarah, and Tony.

iii

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xi

ACKNOWLEDGEMENTS . xii

ABSTRACT . xiii

CHAPTER 1. GENERAL INTRODUCTION 1

Motivation . 1

Research Goal . 1

Dissertation Overview . 1

Challenges . 2

Single GUI framework for desktops and clustered VR environments 2

Support for real-time 3D application features in clustered environments 2

Expert user interface for creating virtual environments of scenes 2

Novice user interface for creating virtual environments 3

Background . 3

Immersive Virtual Reality . 3

VR Systems . 4

Software Licenses . 6

References . 7

iv

CHAPTER 2. OPENSGTOOLBOX: A TOOLKIT FOR EFFICIENT DE-

VELOPMENT OF 3D USER INTERFACES FOR VIRTUAL REALITY

APPLICATIONS . 8

Abstract . 8

Introduction . 8

Background . 9

VR System Architectures . 9

Scene Graphs . 10

Related Work . 11

GUIs . 11

VR Toolkits . 12

Game Engines . 13

Scene graphs . 13

Implementation . 13

OpenSGToolbox with scene graph . 16

Event-driven programming . 16

Reflexive event production definition . 17

Look-and-feel . 18

Simulation of WIMP-like input in 6-DOF tracker based systems. 18

Cross-platform . 19

Limitations . 20

Sample Applications . 20

Conclusion And Future Work . 21

Acknowledgments . 21

References . 22

CHAPTER 3. KABALA ENGINE: A VIRTU AL ENVIRONMENTS AU-

THORING FRAMEWORK FOR NOVICE USERS 23

Abstract . 23

v

Introduction . 23

Related Work . 24

Modules . 25

Animation . 25

Morphs and Deformable Geometries . 27

Advanced Particle System . 27

Importing Digital Assets . 30

Scripting Language . 30

Sound . 31

Video . 32

Physics . 32

User Interface . 33

Generic FieldContainer GUI . 33

KabalaEngine Architecture and Interfaces . 36

Project Player . 36

Project, Scenes, SceneObjects, Effects, Behaviors 36

Control Loop . 38

Run-time debugger . 39

Content View Panel . 40

Scene graph GUI tree . 41

Utility Tab Panel . 41

Main Menubar . 41

Conclusions . 42

Future Work . 43

Acknowledgements . 43

References . 43

vi

CHAPTER 4. CREATING A GRAPHIC USER INTERFACE FOR VIR-

TUAL REALITY AUTHORING: AN OVERVIEW AND ANALYSIS

OF THE KABALAENGINE WORLD BUILDER 45

Abstract . 45

Introduction . 45

Related Work . 47

Design Principles . 48

KabaleEngine Builder Interface . 48

Materials and Methods . 56

Overview of the Study . 56

Apparatus . 57

Procedure . 57

Measures . 58

Participants . 58

Results . 58

Created Users Projects . 60

Discussion . 62

What Worked Well? . 62

What Did Not Work? . 63

Limitations and Future Work . 64

Acknowledgements . 64

References . 64

CHAPTER 5. EXAMPLE WORKS THAT USE OUR CONTRIBUTIONS 66

Overview . 66

MetaBlast . 66

Quarterback Development System . 68

CHAPTER 6. GENERAL CONCLUSIONS 70

Challenges Addressed . 70

vii

Single GUI framework for desktops and clustered VR environments 70

Support for real-time features in clustered environments 71

Expert UI for creating virtual environments of scenes 71

Novice UI for creating virtual environments of scenes 72

Outcome Concerning Research Goal . 72

Future Research . 72

Limitations . 73

Final Thoughts . 74

APPENDIX A. NOVICE USER SURVEY . 75

APPENDIX B. KABALA ENGINE BUILDER USER SURVEY RAW DATA 78

APPENDIX C. NOVICE USER TASKS . 83

APPENDIX D. KABALA ENGINE BUILDER INTERFACE SKETCHES 91

viii

LIST OF TABLES

Table 3.1 Particle properties . 28

Table 3.2 Asset types . 37

Table 3.3 Project Events . 37

Table 3.4 Scene Events . 37

Table 3.5 Specific Types of SceneEffects . 38

Table 3.6 Scene Object Effect Events . 38

Table 4.1 3D Scene View Panel Toolbar Buttons 51

Table 4.2 Main Toolbar Buttons . 56

Table B.1 Survey Questions . 79

Table B.2 Survey Results . 79

Table B.3 Survey Results (continued) . 80

Table B.4 Survey Results (continued) . 81

Table B.5 Survey Results (continued) . 82

Table B.6 Survey Results (continued) . 82

ix

LIST OF FIGURES

Figure 2.1 A four-sided Virtual Reality system. 11

Figure 2.2 Graph structure of a scene graph used to represent a 3D scene. 12

Figure 2.3 Example GUI components supported in the OpenSGToolbox user in-

terface toolkit . 14

Figure 2.4 Complex GUI components supported in the OpenSGToolbox user in-

terface toolkit . 15

Figure 2.5 Example 3D Graphical User Interface. 17

Figure 2.6 Examples of the OpenSGToolbox user interface toolkit used in other

applications. 21

Figure 3.1 Class hierarchy of Animations . 26

Figure 3.2 Class Hierarchy of Deformable Geometries and Morphs 28

Figure 3.3 Class hierarchy of Particle System . 29

Figure 3.4 Class hierarchy of Sounds . 32

Figure 3.5 Class hierarchy of Video . 33

Figure 3.6 Class hierarchy of Physics . 34

Figure 3.7 Generic FieldContainer Editing Interface 35

Figure 3.8 Class hierarchy for Project . 38

Figure 3.9 KabalaEngine Debug Interface . 40

Figure 4.1 KabalaEngine Builder Interface . 49

Figure 4.2 Transformation Direct Manipulation Tools 52

Figure 4.3 Transformation Direct Manipulation Tools 53

x

Figure 4.4 Transformation Direct Manipulation Tools 54

Figure 4.5 Participant Experience . 58

Figure 4.6 Task Survey . 59

Figure 4.7 Project Realism . 59

Figure 4.8 Software Freetime Use . 60

Figure 4.9 Project created by a single participant in 50 minutes 61

Figure 4.10 Scenes created by participants during 50 minute task 62

Figure 5.1 Inside a Leaf Cell in the Metablast Application 67

Figure 5.2 The Main Menu of the Metablast Application 67

Figure 5.3 An Information Log GUI in the Metablast Application 68

Figure 5.4 The QDS Playbook Manager Interface 69

Figure 5.5 Warping the video playback in QDS 69

Figure D.1 Version 1 . 92

Figure D.2 Version 2 . 92

Figure D.3 Version 3 . 93

Figure D.4 Version 4/Final . 93

xi

LIST OF ALGORITHMS

Algorithm 3.1 Window main loop pseudocode . 39

xii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those that have helped me

on my journey. Firstly, I wish to thank and express my deepest gratitude to my advisor Dr.

Julie Dickerson for providing me a tremendous graduate education experience. I owe a major

share of my success to her constant encouragement, continuous support, and her belief in my

abilities. I am also very grateful for having a wonderful doctoral committee and wish to thank

Drs. Stephen Gilbert, David Fernández-Baca and Sunghyun Kang for providing me valuable

input.

A great deal of thanks is due to the Virtual Reality Application Center (VRAC) at ISU.

The staff have been tremendously helpful with organizing and with fixing technical problems

that have cropped up along the way. The facilities at Virtual Reality Application Center

(VRAC) have been world class and extremely useful.

Thanks also go to my work colleagues on Metablast: Achyuthan Vasanth, Daniel Guilliams,

Robert Goetz, Eric Langkamp, Will Schneiller, Amy Dixon, PJ Campbell, and David Naylor.

You provided a supportive and positive work environment. Thanks goes out to my friends,

especially Karen. You have helped me stay on course, and given me time to relax in the fleeting

moments when it was possible.

Finally, I would like to thank my wife Amber, mother, sister Sarah, and brother Tony. My

wife, you have been there for me at all those times that no one knows about that kept me

going. Mother, you have supported me in all my endeavors, I can still remember that your’s

was the voice that I could always hear when I would run a race. Sister, you are the reason

I started working a VRAC; you have provided me with intelligent critique of ideas. Brother,

you have solidified our families cohesion with your tireless work for Mom, Sarah, and myself.

xiii

ABSTRACT

Developing applications for Virtual Reality(VR) systems is difficult because of the special-

ized hardware required, complexity of VR software, and the technical expertise needed to use

both together. We have develop tools and applications that support the authoring of virtual

reality applications. The tools will support development of VR applications based on common

requirements of the hardware and architecture used in VR systems.

We developed support for animations, geometry morphs, deformable geometry, advanced

particle systems, importing digital assets, embedding a scripting language virtual machine,

sound library wrappers, video library wrappers, and physics library wrappers for the OpenSG

framework. The KabalaEngine was developed to use the supporting libraries previously men-

tioned in a clustered VR system using OpenSG’s clustering capabilities. The KabalaEngine

has an expert graphical user interface that can be used for developing virtual environments.

Finally, we developed a graphical user interface for novice users of the KabalaEngine. We

found that users of the KabalaEngine were able to use the interface to produce three different

complex virtual environments with 10-15 different 3D objects arranged in a meaningful way in

fifty minutes.

1

CHAPTER 1. GENERAL INTRODUCTION

Motivation

Virtual reality applications are useful. They have been used for psychiatric treatment, train-

ing skilled disciplines, prototyping architecture, teaching visual-spacial skills, teaching history,

entertainment, and many other applications. Developing applications for Virtual Reality sys-

tems is difficult because of the hardware required, complexity of Virtual Reality software, and

the technical expertise required to use them. The scope of users that could utilize virtual

reality systems could be greatly increased with better development tools for expert and novice

users.

Research Goal

The goal of this research is to develop tools and applications that support the authoring

of virtual reality applications. The tools will support development of VR applications based

on common requirements of the hardware and architecture used in VR systems. Building on

these tools we will develop an application for novice and expert users to develop virtual reality

applications using a graphical user interface. The goal of the application for novice users is to

reduce the time and technical skill required to develop VR applications.

Dissertation Overview

This dissertation is organized as a series of three manuscripts that have been submitted or

will be submitted to peer-reviewed journals and conferences. Chapter 1 frames the motivation

and goals of the research, and provides a background of virtual reality and why it is important.

2

Chapter 2 is a manuscript describing the design and implementation of a 3D graphical user

interface library for OpenSG. Chapter 3 is a manuscript of the design and implementation of

the KabalaEngine, an application for authoring virtual environments, and supporting libraries

for the KabalaEngine. Chapter 4 is a manuscript of the design and evaluation of a novice

graphical user interface for the KabalaEngine. Chapter 5 describe works that have used the

contributions we’ve developed. Chapter 6 discusses the general conclusions that can be made

from these works, limitations, and future work that could follow.

Challenges

Single GUI framework for desktops and clustered VR environments

Creating a graphical user interfaces that can be used on desktop and VR systems is difficult.

There are many mature libraries for graphical user interfaces for desktop systems, and there

are some that can be used in 3D. However, there is a need for graphical user interfaces that

can be used in both desktop and VR systems. The primary difficulty is handling clustered

architectures used by many VR systems.

Support for real-time 3D application features in clustered environments

There are many common features of real-time applications that are not directly supported

for clustered VR systems. These include animations, morphs, deformable geometries, particle

system, physics, sound, video, importing assets, and scripting. OpenSG is a scene graph

library that directly supports efficient clustered VR application development. We will detail

our contribution to OpenSG to support the previously mentioned features.

Expert user interface for creating virtual environments of scenes

If the challenges for supporting clustered graphical user interfaces and the other previously

mentioned features are met, then those feature can be used to create a application to support

expert users creating virtual environments. The application can support expert developers by

3

moving the definition of content and behavior from compiled code to data that is created using

a graphical user interface and saved.

Novice user interface for creating virtual environments

It is a goal of virtual reality research to make authoring virtual environments easier. Ideally,

anyone that has an idea for a virtual environment should be able to create that environment

easily. There are many barriers to this: the hardware is expensive and complicated, the software

for running the hardware is also expensive and/or complicated, multimedia content is expensive

or nonexistent, and their is not a large community of novice virtual reality developers. Novice

developers could be supported by an application that uses a graphical user interface to simplify

many of the complex tasks required.

Background

Immersive Virtual Reality

Virtual reality systems were first introduced in the 1960’s when a cinematographer released

a system called Sensorama Simulator. This device used stereo video of riding a motorcycle,

stereo audio, haptic feedback through vibrations, and wind through fans. This resulted in the

first serious work on virtual reality.

Virtual Reality has been applied to many problems. Virtual reality attempts to create

immersion in a virtual world to help solve some problems. Immersion is realized by providing

input to users that gives an experience of being inside a real place and situation outside of

their actual location and situation. To create an immersion experience, users are presented

with input to some subset of their senses; visual, audial, touch (pressure, temperature, and

pain), smell, and taste. The simulation is also an important aspect of immersion. This means

providing an environment that behaves in an expected manner, gravity makes things fall,

people don’t walk through walls, fires burn things and produce smoke, and many other things.

Interaction is also important; users need to be able to effect the environment in order to feel

immersed in it.

4

Virtual reality has been demonstrated to be useful in the following disciplines.

• Simulations for military and civilian training when training under the actual circum-

stances would be too dangerous, costly, or literally infeasible[Taffinder et al. 1998].

• Psychiatric treatment[Krijn et al. 2004].

• Teaching visual spatial skills.

• Prototyping large architectural and construction projects.

• Entertaining through video games, interactive storytelling, or artistic/cultural exhibits.

• Gaining new insights on data through data visualization.

• Providing cathartic experiences to provide stress relief.

• Teaching historical or contemporary fact through virtual recreations of environments,

civilizations, cultures, and structures that no longer exist or cannot be experienced di-

rectly.

VR Systems

The hardware used for virtual reality systems is varied. There is specialized hardware for

visual, audio, touch, smell, and taste displays.The hardware used in VR systems varies by the

scope, level of immersion, cost, and technology available.

Visual Display Visual displays can range in size from very small, 1 cm, to very large

> 10 meters. A small project may use a PC and monitor; this is relatively inexpensive but

does not provide the depth of immersion that more complex systems offer. Recently 3DTV

technologies have brought 3D, i.e. stereo displays, to consumer level HDTVs. However, this

is little different then using a larger monitor as most HDTVs still do not cover a large field of

view. Head mounted displays (HMDs) provide more visual immersion by presenting separate

images to each eye and also suffer from a small field of view. Larger displays use projectors

and combinations of smaller visual displays.

5

Multi-visual display systems combine and synchronize a collection of visual displays. A

CAVE system is a multi-visual display arrangement that encloses, or partially encloses, users

in a room where the walls of the room are visual displays. The visual displays in CAVEs

cover all or most of the users field of view. CAVEs require a large space footprint, complex

construction, and expensive projection hardware. A theater arrangement uses a screen setup

similar to cinema theaters, but often with higher end projectors in order to display stereo

images. The expense and complexity of large and high fidelity visual displays keeps them out

of reach at the consumer level. This makes VR development more difficult because the VR

systems are difficult to access.

Audio Display The complexity of an audio system depends on the frequency range,

clarity, amplitude, and 3D positioning support of the display. To handle 3D positioning of

audio more speakers are needed to increase the number of physical positions that virtual sounds

can come from. Additionally more computation is needed as more speakers are added; so that

the correct audio output is sent to each speaker. The decibel output of the audio system

scales with the number of simultaneous users that a system is designed for. The expense

and complexity of large and high fidelity audio displays is not as high as for visual displays.

However, this still makes VR development more difficult because the VR systems are difficult

to access.

Computation The computational power of the system running a VR environment is

another important hardware factor for VR systems. Large visual displays can only be fully

utilized if they receive a high fidelity, low latency stream of graphical output from the computers

running the VR application. The computational component of VR systems receive input from

the input devices, process that input via computation, and then package and stream output

to all of the output displays. VR systems organize the computation hardware may be either

one large server or a clustered collection of smaller computers.

VR systems that use a cluster of computers, synchronized with software and hardware to

run a VR application. Clusters can scale to larger display sizes because several computers can

6

render a separate view of the scene in parallel. The cost of a clustered system is significantly

larger than a desktop system with just a single computer.

Input Input for VR systems has primarily been concerned with tracking the position

and orientation of users. This information is required for immersive stereoscopic display when

calculating the correct viewpoint for each eye. 6-degrees of freedom (6-DOF) tracking, 3D

position and orientation, are necessary for this calculation. There are four main types of

devices that have been produced for 6-DOF tracking; magnetic, sonic, gyroscopic, and image

based. Recently there has been research into using low cost cameras and visual fiducials in

a fully enclosed cave for tracking []. This technique has been shown to be accurate, with

moderate latency. Using visual fiducials is currently limited by the requirement to be used

in fully enclosed cave environments, and additional processing on the image data from the

camera.

Other than tracking devices, VR environments use common computer interaction devices,

the keyboard and mouse being the most prevalent. There is also use of touch screen de-

vices(tablets), gamepads, 3-degree of freedom trackers (Wiimote, PS3 controller), and micro-

phone (audio processing).

Software Licenses

When considering the use of software and libraries for development of VR applications,

it’s important to understand how the product it is affected by the licensing. The licenses of

dependent libraries and applications can be barrier to application not only in understanding

the licenses but also in the legal requirements imposed by them. Together this can decrease the

incentives for developing applications. Bruce Perens describes four main categories of software

licenses: proprietary, gift, sharing with rules, and in-between licenses [Perens 2009].

Proprietary software is licensed such that it may not be modified or used in another software

package, doing so would be copyright infringement. The Open-source gift licenses like the

Apache license [Apache] allow modification and use of the software in any derivative work

including proprietary software. Open-source sharing with rules licenses allow modification and

http://www.apache.org/licenses/LICENSE-2.0

7

use of software as long as the derivative work is also shared. The General Public License

version 3(GPL3) [GPL3] is an example of an open-source sharing with rules license. Open-

source “in-between” licenses like the Lesser General Public License version 3(LGPL3) [LGPL3]

allow modification and use of the software in derivative work, including proprietary software,

with the condition that the original software code be made available with the derivative work.

There may be software that provides the functionality needed in a new application, but

because of licensing, that software may not be legally usable. This makes the general use of

proprietary software and systems inaccessible to many. But under some open-source licenses,

there is legal ground for users to use, modify, and share derivative work. All of the contributing

libraries and software we are presenting are released under the LGPL and GPL.

References

Krijn, M., Emmelkamp, P. M. G., Olafsson, R. P., and Biemond, R. 2004. Virtual reality exposure

therapy of anxiety disorders: A review. Clinical Psychology Review 24, 3, 259–281.

Perens, B. 2009. How many open source licenses do you need?

Taffinder, N., Sutton, C., Fishwick, R. J., McManus, I. C., and Darzi, A. 1998. Validation of virtual

reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled

studies using the mist vr laparoscopic simulator. Studies in health technology and informatics 50, 124-30,

–.

http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/lgpl.html

8

CHAPTER 2. OPENSGTOOLBOX: A TOOLKIT FOR EFFICIENT

DEVELOPMENT OF 3D USER INTERFACES FOR VIRTUAL

REALITY APPLICATIONS

A paper submitted to UIST 2011

David J. Kabala 1 2, Julie Dickerson 3

Abstract

Graphical User Interfaces(GUI) are difficult to develop for clustered Virtual Reality(VR)

applications, because GUI toolkits do not distribute the rendering and input between the

computers in the cluster. Because of this, GUIs are often coded separately for each VR

application. OpenSGToolbox is an open-source, cross-platform graphical user interface toolkit

that can render a 3D projection of a GUI across a clustered VR system. The toolkit has been

designed to support an event-driven programming model, data and method reflexivity, and a

wide variety of input devices common to both VR and desktop systems. We will present the

methods we used to develop a GUI toolkit using the cluster-supporting scene graph library

OpenSG.

Introduction

Developing a VR application that has a GUI is difficult. VR systems can widely vary on

their computing architecture, display system, input devices, and the underlying operating sys-

tem used. Developing a GUI for a VR application can be inflexible if moved to a different VR

1Human Computer Interaction Program, Iowa State University, Ames, Iowa
2Author for correspondence
3Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa

9

system than the original. The requirements for the OpenSGToolbox are to efficiently synchro-

nize a 3D GUI over clustered system, common to VR systems. It is important to draw the the

GUI as a 3D object in VR systems because there are often multiple displays in the system that

are not on the same physical plane. Drawing the GUI on a plane within the 3D virtual space

allows the GUI to be rendered with the correct projection across displays. There are toolkits

that make this easier for 3D content, but not for GUIs. Using the existing technology OpenSG

for developing clustered VR applications, we have developed the OpenSGToolbox user inter-

face toolkit. The OpenSGToolbox user interface toolkit that helps users develop GUIs that

can be used across a wide array of clustered VR systems and desktop environments.

In the following sections we will give background information on VR architecture and it’s

differences with single-computer systems. The toolkits available for GUI and VR development

will be evaluated. We will describe the design and implementation of the OpenSGToolbox user

interface toolkit and how it can be used to develop VR applications.

Background

VR System Architectures

Many virtual environment systems connect multiple visual displays together that must be

synchronized. A CAVE system is a multi-display arrangement that encloses, or partially en-

closes, users in a room where the walls function as displays[Cruz-Neira 1995][Cruz-Neira et al. 1993].

The displays in CAVEs cover all or most of the user’s field of view.

VR systems can be comprised of a large number of displays. These systems can be limited

by the display bandwidth required to fill the resolution of all of the displays at an interactive

rate. Solutions to this have involved a single powerful server or a distributed cluster of com-

puters. Single server configurations have fallen out of favor because of cost, complexity, and

availability. Clusters have the advantage of employing consumer-level hardware to provide the

displays with the visual information. However, clustered VR systems must synchronize the

input and output to and from the nodes in the cluster. This in turn can lead to additional

bandwidth issues.

10

The computational power of the platform running a Virtual Environment is another im-

portant hardware factor for VR systems; large displays can only be fully utilized if they receive

a high quality, low latency stream of graphical output from the computers running the VR

application. The computational component of VR systems receive the input from the input

devices, process that input in the VR application, and then stream output to all of the output

devices. Many VR systems use a cluster of computers, which are synchronized with software

and hardware, to run a VR application. Clusters can scale to larger display sizes because

several computers can share the load of rendering different parts of a scene in parallel.

Input for VR systems has primarily been concerned with tracking the position and orienta-

tion of users. This information is required for immersive stereoscopic display when calculating

the correct viewpoint for each eye. Six degree-of-freedom (6-DOF) tracking devices provide the

3D position and orientation data that are necessary for this viewpoint calculation. Other than

tracking devices, VR environments use common computer interaction devices such as a key-

board, mouse, touch screen devices, gamepads, three degree-of-freedom trackers (Wiimote, PS3

controller), and microphones (audio processing). Figure 2.1 shows an example of a four-sided

cave with four projectors and a tracking device in the users hand.

Scene Graphs

Given the complexity of the visuals created for VR applications scene graphs are often used

for efficiency. Scene graphs are graphs that are used to logically and/or spatially represent

graphical objects in a scene. Scene graphs are collections of nodes that are connected as a

graph and in some cases a tree data structure. Scene graphs can achieve greater efficiency

by traversing the graph and only rendering or checking for collision with those nodes that

intersect with the view volume or collision geometry. Often times these lead to large efficiency

gains, because all of the geometry outside of the view volume is not pushed further through

the rendering pipeline. Figure 2.2 shows an example of a scene graph for a robot scene with

nodes containing transformations, geometry, and children nodes.

11

Figure 2.1 A four-sided Virtual Reality system.

Related Work

Several toolkits were assessed for adding a GUI into the scene graph of a clustered applica-

tion. There are some commercial and noncommercial toolkits that efficiently synchronize data

in a clustered system or can render a GUI as a 3D object in the cluster, but no toolkit was

found that can do both. We assessed which toolkit would be the best suited for adding a GUI

into the scene graph of a clustered application. The toolkits assessed ranged from VR toolkits,

game engines, and scene graph libraries.

GUIs

The GUI toolkits evaluated were WIN32(Windows), Cocoa(OS X), X(Primarily Linux/Unix),

and QT(cross-platform). Synchronizing a GUI over a clustered VR system is problematic be-

12

Figure 2.2 Graph structure of a scene graph used to represent a 3D scene.

cause these GUI toolkits were not designed to do this. These GUI toolkits are designed to

receive mouse and keyboard input from the OS they are running on and are not designed

to share the response to input and drawing responsibilities between separate computers. A

clustered VR system that has nodes of different platforms means that the GUI library needs

to be cross-platform as well, neither WIN32 nor Cocoa can do this. The QT and X toolkits

are cross-platform but can not be directly renderedin a 3D clustered system.

VR Toolkits

Vizard and VRJuggler are toolkits for developing a 3D VR application that can be used

in a clustered architecture. In both cases, the GUI cannot be attached to the scene graph

or drawn in 3D space, it is only drawn on the foreground. Vizard is closed-source and does

not give flexibility. Additional GUI elements cannot be added using Vizard plugins or by any

other means since it is closed source, in addition the GUI is not rendered in the scene graph

so can’t be rendered in 3D. VRJuggler does not have a GUI library, although it does handle

input from a wide variety of devices.

13

Game Engines

Game engines provide much of the functionality needed for developing a GUI. We reviewed

Delta3D, Panda3D, Torque3D, Unity, Unreal, and Crytech. Delta3D is the only engine that

has been used in a clustered VR environment without synchronization problems, the others do

not have support for clustering in a VR system. None of these engines can be used to draw

the GUI as a 3D object in the scene using the scene graph, but instead with the window and

is drawn as a foreground.

Scene graphs

OpenSceneGraph and OpenSG were reviewed for use in a clustered VR environment. Open-

SceneGraph does not directly support clustering at the scene graph level, but applications can

use OpenSceneGraph and VRJuggler together for clustered applications. For OpenScene-

Graph, clustering is usually handled by starting the same application on all the nodes of the

cluster and synchronizing the input and output of all of the nodes. This can provide good re-

sults for simple applications but often has many synchronization issues as the application gets

complex. OpenSG, however, directly supports multithreaded and cluster safe observation and

modification of data for a VR application[Reiners 2002]. Because of this OpenSG can run the

VR simulation on a single node and synchronize the data with the other nodes in the cluster.

This is a more efficient use of the cluster resources. Both OpenSceneGraph and OpenSG can

also be combined with VRJuggler to handle VR input devices. Neither OpenSceneGraph nor

OpenSG have a GUI library.

Implementation

Because OpenSG provides direct support for clustering VR applications, we selected it

as a base toolkit to develop our user interface toolkit. Use of OpenSG as a backend allows

for clustering without additional code. OpenSG has the additional important features that

class member data are reflexive, can be used with VRJuggler for building applications for VR

systems, and is easily modified and extended because it is open-source.

14

The OpenSGToolbox user interface library is approximately 240,000 lines of c++ source

code (excluding comments and whitespace). The OpenSGToolbox user interface toolkit is

made up of Component, ComponentContainer, Layout, Border, Layer, Font, LookAndFeel,

and DrawingSurfaces. Component is the base class for all GUI elements, often called widgets

in other GUI toolkits. Figure 2.3 shows the basic Window, Icon, Mouse, Pointing device

(WIMP) GUI elements implemented as Components, Figure 2.4 shows the complex WIMP GUI

elements implemented as Components. ComponentContainers are Components that contain

other Components, our user interface library supports the common GUI element containers:

Tab Panel, Split Panel, Scroll Panel, and Windows.

Figure 2.3 Example GUI components supported in the OpenSGToolbox

user interface toolkit

ComponentContainers contain Components and use Layouts to define the position and

size of Components they contain. The Layout base class is an abstract class that defines

15

Figure 2.4 Complex GUI components supported in the OpenSGToolbox

user interface toolkit

polymorphic methods for setting the position and size of Components that are contained

within some ComponentContainer. Every ComponentContainer must have a specific Layout

attached. The following specific Layouts are defined by our user interface library.

• AbsoluteLayout: set the position and size of Components with user-defined values.

• FlowLayout and BoxLayout: position the Components vertically or horizontally within

the ComponentContainer.

• BorderLayout: position and size Components into north, south, east, west, and center

areas of a ComponentContainer.

• SpringLayout: set the position and size of Components by using user defined directional

relationships, or constraints, between the edges(east, west, north, south, vertical center,

horizontal center) of components.

• GridLayout: sets the position and size of Components by a grid with user defined number

16

of horizontal and vertical subdivisions.

In addition to the implementation of common GUI library components, the OpenSGTool-

box user interface library contributes the features of attaching a GUI as a node in the scene

graph, reflexive definition of produced events, support for clustered applications with a single

GUI, and simulation of WIMP-like input with 6-DOF trackers and gamepads.

OpenSGToolbox with scene graph

The user interface library can define a GUI and use it flat on the foreground of a window

or put into the 3D projection within the scene graph. The same interface can be used on

a desktop or in a VR system. Connecting the GUI to the scene graph allows the GUI to be

arranged like any other object in the scene graph and displayed across multiple output displays

in a clustered VR system fulfilling one of our design requirements. As an example, the same

window is rendered in the foreground in Figure 2.5(a) and as a 3D object in the scene graph

in Figure 2.5(b). In the bottom of the figure, the camera is moved to an oblique angle with

respect to the surface of the GUI window so that the effect of the perspective transformation

can clearly be seen on the GUI window. The mouse location is projected into the scene when

the GUI is attached to the scene graph.

Event-driven programming

The OpenSGToolbox user interface toolkit was developed to provide an event-driven pro-

gramming model to developers. This was implemented using object oriented programming

with event producers, events, event details, and event handlers[Meyer 2004]. Event producers

are concrete instances of objects that are defined to produce specific events. Event details

encapsulate the specific details attributed to the invocation of an event. Event handlers are

objects that “listen” for events produced by a specific instance of an event producer. When an

event is produced by the event producer all attached event handlers are invoked and sent the

event details of the event. This allows applications developers to write closures of code that

handle how the application should respond to an event.

17

(a) Example window rendered in the foreground (b) Example window rendered in the scene graph

Figure 2.5 Example 3D Graphical User Interface.

Reflexive event production definition

Reflexivity is a property in which a computer application can observe and modify it’s struc-

ture at run-time. Reflection can be broken down further in the parts of the system that can be

observed or modified[Smith 1982]. While FieldContainers in OpenSG are data-reflexive, there

is no definition for method-reflexivity. This is a problem for the addition of a data-driven ar-

chitecture for events with OpenSG, because events require a reflexive interface so that generic

algorithms can be used for connecting to specific events. We added an interface to FieldCon-

tainers in OpenSG for Method-reflexivity. The boilerplate code for each FieldContainer that

produced events is automatically generated by extending OpenSG’s code generating tools. As

an example, user code could connect an event handler to a key pressed event by searching

all instantiated FieldContainers for one that produces an event called ”KeyPressed”. The

interface for produced events consists of the following methods:

• Query the number of events produced by a FieldContainer.

• Query the type of data produced by a produced event of a given index

• Attach a method to a produced event that is invoked when the event is produced by an

18

instance of that FieldContainer

Reflection is not a feature of the C, or C++ languages which are used to program OpenSG

and the OpenSGToolbox user interface toolkit. OpenSG was designed to handle multithreaded

data in an easy way and that extends to clustering quite naturally. OpenSG defines containers

which are protected against simultaneous access from more than one thread. Nearly every

OpenSG specific class related to data storage is derived from the FieldContainer. A Field-

Container holds a collection of fields. A field is the smallest construct of data attached to a

FieldContainer, and consists of the type of data held by the field, the data of the field, name of

the field, and other properties. FieldContainers can be considered as having data-reflexivity,

because the fields of a FieldContainer can be observed and modified at run-time by using an

abstract interface defined by the FieldContainer base class. This allows the definition of meth-

ods that act on FieldContainers generically instead of creating specific code for every concrete

type, and future type, of FieldContainer.

Look-and-feel

The OpenSGToolbox user interface library can change the look-and-feel of a GUI. This is

done using the prototype pattern[Gamma et al. 1995]. A Look-and-feel manager class is used

to store and define the prototypes used for all of the components of a particular look-and-feel.

Only a single look-and-feel can be active at once. As an example, when a Button needs to be

instantiated, the new instance is copied from the data of the prototype button for that look-

and-feel. This allows users to change the look-and-feel of their interface by simply changing

the prototypes used by the look-and-feel manager.

Simulation of WIMP-like input in 6-DOF tracker based systems.

Simulating WIMP-like input for a GUI in a VR system is useful because the WIMP model

is familiar, it can be used across many platforms, decreases development time, and has been

extensively studied. Many users are familiar with the WIMP interface model. It allows the

creation of interfaces that can be used either in desktop or VR systems. Development time

19

can be decrease dramatically because the GUI can be created and tested on a desktop system

using familiar GUI components and then used in a VR system.

The WIMP model requires input for directing the location of interacting with objects in

the GUI. This is most commonly accomplished using a mouse-cursor model, or a touch based

model. Mouse and touch-based input methods are not commonly used in VR systems because

they are awkward to use. The OpenSG user interface library implements two primary methods

for directing the location of interaction with objects in the GUI in VR systems depending on

the input available: 6-DOF trackers and gamepads.

For VR systems with 6-DOF trackers and devices with analog buttons, mouse-like func-

tionality can be simulated. The location and orientation of a tracker that a user has in their

hand is used to cast a ray into the 3D simulation and is intersected with the quadrilateral that

the 3D GUI is drawn on. The point of intersection is used as the position of the cursor. The

buttons of the device with analog buttons are mapped to specific mouse buttons. A 6-DOF

tracker is necessary for constructing the ray for the intersection test, because a ray is defined

with a position and direction.

For VR systems with gamepad input, mouse-like input may be unnecessary. The buttons

can control which GUI component has focus. Only a single GUI component in a window can

have focus, and the focused component can be manipulated further with the gamepad. As an

example, a button that has focus can be triggered by moving the focus to the button in the

GUI, and then pressing a button on the gamepad to trigger it. This approach is similar for

other GUI components. This model is used by many console-based video games, because the

gamepad is often the only input device used.

Cross-platform

OpenSG already provides cross-platform support for threading, network communications,

and data endieness. The Window class of OpenSG needed to be extended to ensure that The

OpenSGToolbox user interface toolkit maintained cross-platform support for Windows, OS X,

and Linux platforms. The bridge design pattern was used for this[Gamma et al. 1995]. An

20

abstract WindowEventProducer inherits from OpenSG’s Window class and defines an abstract

interface used by the user interface library for managing the operating system specific window

and events. Concrete classes were implemented for WIN32, Carbon, and X11 that implemented

the abstract WindowEventProducer interface for those respective platforms. The C++ boost

libraries were used for cross-platform support for filesystem paths and date-time objects.

Limitations

The described configuration for simulating the desktop mouse allows the same user interface

to be used across desktop and VR platforms with some limitations. Mouse simulation with a

6-DOF tracker requires the user to continuously(actively) keep the cursor in its location(cannot

release the tracker, unless it is attached in some way). However, in desktop systems a mouse

controlled cursor maintains its position when the user releases the mouse. Mouse directed

input has greater precision than many 6-DOF trackers, this can make using the interface more

difficult on VR platforms. Precision of the simulated mouse is further exacerbated on VR

platforms as the distance of the 3D GUI from the viewer increases . This can be mitigated by

constraining the 3D location of the GUI to follow the viewer.

Sample Applications

The OpenSGToolbox user interface library has been used by several separate projects.

Figure 2.6(a) is an application used for authoring a VR application; it is using Button,

SplitPanel, TextField, Checkbox, Spinner, Menubar, Label, TabPanel,ProgressBar, Tree, and

OpenGLCanvas components provided by the library. Figure 2.6(b) from the Meta!Blast educa-

tional game that can be used in a VR system or desktop. The Meta!Blast game contains a GUI

for answering questions inside of an interactive plant cell[Call et al. 2007][Wurtele et al. 2010].

These question GUIs are rendered in the 3D scene so that they can be used in a VR system

and because the GUI is localized in 3D space to the area of the cell that the question is relevant

to.

21

(a) A GUI designed for a VR authoring application (b) A 3D graphical user interface in the cell biology game
Meta!Blast.

Figure 2.6 Examples of the OpenSGToolbox user interface toolkit used in

other applications.

Conclusion And Future Work

This user interface library is part of the OpenSGToolbox collection of libraries (http:

//www.opensgtoolbox.org), and is released under the Lesser General Public License version

3. We have contributed a toolkit for building clustered VR applications with a GUI. This

includes all of the basic functionality of modern GUIs, connection of the GUI to a scene graph,

reflexive event production, and simulation of WIMP-like input with 6-DOF tracker or gamepad

input devices. Future work with the OpenSG user interface toolkit could include rendering

GUI components with 3D filling geometry or as a textured surface over non-planer geometry

instead of rendering the GUI over a flat planes, support for additional direct manipulation

metaphors in VR environments, through body-based gestures, and support for easier input of

textual information such as through tablets or other mobile devices.

Acknowledgments

Work on this article was sponsored in part by SEPA - NCRR - NIH, the National Science

Foundation, and the GDCB PSI College of LAS at Iowa State University. The authors would

like to thank Achyuthan Vasanth, Jonathan Flory, Lee Zaniewski, Alden Peterson, Gerrit Voss,

David Naylor, and Aaron Cronk for their contributions of source code.

http://www.opensgtoolbox.org
http://www.opensgtoolbox.org
http://www.gnu.org/licenses/lgpl-3.0.txt
http://www.gnu.org/licenses/lgpl-3.0.txt

22

References

Call, A., Herrnstadt, S., Wurtele, E. S., Dickerson, J., and Bassham, D. 2007. Meta!blast virtual

cell: A pedagogical convergence between game design and science education. Journal of Systematics,

Cybernetics, and Informatics 5, 27–31.

Cruz-Neira, C. 1995. Virtual reality based on multiple projection screens: The cave and its applications to

computational science and engineering. Ph.D. thesis, University of Illinois at Chicago.

Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. 1993. Surround-screen projections-based virtual

reality: The design and implementation of the cave. In ACM SIGGRAPH 93.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley.

Meyer, B. 2004. The power of abstraction, reuse and simplicity: an object-oriented library for event-driven

design. In Essays in Memory of Ole-Johan Dahl. Vol. 2635. 236–271.

Reiners, D. 2002. Opensg: A scene graph system for flexible and efficient realtime rendering for virtual and

augmented reality applications. Ph.D. thesis, Technischen Universität Darmstadt.

Smith, B. C. 1982. Procedural reflection in programming languages. Ph.D. thesis, Massachusetts Institute

of Technology.

Wurtele, E., Basham, D., Dickerson, J., Kabala, D., Schneller, W., Vasanth, A., and Steneson,

M. 2010. Meta!blast: A serious game to explore the complexities of structural and metabolic cell biology.

In ASME 2010 World Conference on Innovative Virtual Reality.

23

CHAPTER 3. KABALA ENGINE: A VIRTU AL ENVIRONMENTS

AUTHORING FRAMEWORK FOR NOVICE USERS

A paper submitted to ISVC 2011

David J. Kabala 1 2, Julie Dickerson 3

Abstract

Developing applications for Virtual Reality systems is difficult because of the hardware

required, complexity of Virtual Reality software, and the technical expertise required to use

them. The KabalaEngine is a application development framework designed to support the

development of Virtual Reality applications. The KabalaEngine is an open source applica-

tion that allows users to build virtual environments with multimedia content and interactive

components into a user-created application. Once the relationships have been designed, the

engine can then run the user-created application in a virtual reality system equipped with a

VR Juggler configuration.

Introduction

It is a goal of virtual reality research to make authoring virtual environments easier. Ideally,

anyone that has an idea for a virtual environment should be able to create that environment

easily. There are many barriers to this: the hardware is expensive and complicated, the software

for running the hardware is also expensive and/or complicated, multimedia content is expensive

1Human Computer Interaction Program, Iowa State University, Ames, Iowa
2Author for correspondence
3Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa

24

or nonexistent, and their is not a large community of novice virtual reality developers. We have

developed the KabalaEngine and supporting libraries to ease the complexities of authoring for

virtual reality experiences. The KabalaEngine was built using OpenSG for clustered support.

Because of this, several libraries were contributed to OpenSG that add features and still provide

clustered support. The libraries added include support for animations, particle systems, 3D

graphical user interfaces, sounds, videos, scripting, and physics. The KabalaEngine uses these

libraries to construct projects from a collection of scenes. The KabalaEngine can play the

projects in a virtual reality system that has a VR Juggler configuration.

Related Work

The existing tools available to users for developing Virtual Reality applications provide

many useful features but have some limitations. There are frameworks such as Vizard, CAVE

[Cruz-Neira 1995], VR Juggler [Bierbaum et al. 2001], OpenSG [Reiners 2002], Virtools, Alice,

and inVRs [Kepler 2009] that provide Application Program Interfaces(APIs) for developing

applications. All of these require programming experience to use. Other features that can

be important in a general purpose framework for VR application development are animation,

character models, cluster support, modern graphics support, particle systems, physics(rigid

and soft body), scripting languages for faster development, sound, user interfaces, and video.

There are many libraries available that provide some of these features. Vizard supports many

of these features but does not provide an interface for non-programmers.

3DVIA Virtools is a large commercial product for authoring VR applications. Virtools

has support for modern 3D graphics, physics, animations, scripting (via a proprietary, in-house

language), particle systems, clustering support, and many others. Virtools is closed-source,

potentially very costly, and targeted more to expert users. The price for deploying Virtools

increases with the number of GPUs present in the VR systems it is deployed on.

Alice is a teaching tool designed for introducing programming to students using a 3D

drag-and-drop interface[?]. Alice was originally developed as a tool for fast prototyping for VR

25

systems[Conway et al. 2000] but has changed for use as a programming teaching tool. Alice

is not clusterable, has moved to a desktop-only application. Alice is open-source but does

not take contributions. No physics, morphs, skeletal morphs, particles, clustering, or video

playback on 3D objects in the scene are supported. The software does allow users to create

videos from the animation.

Modules

The KabalaEngine was written to support many of the expected features in real-time 3D

applications. These include modern 3D graphics, animation, physics, particle systems, 3D

model file importing, video playback, sound playback, scripting, graphical user interfaces, and

scene management. Some of these features are supported by OpenSG and other libraries. The

KabalaEngine and supporting libraries were developed to work with OpenSG. The following

sections details our contributions of some of these features to OpenSG as modular libraries,

and their integration into the KabalaEngine.

Animation

The data reflexive features of OpenSG were used to implement a generic animation library.

The animation library is made up of Animations, Animators, and KeyframeSequences. Ani-

mations are can be applied to data that is supported by an attached Animator. Because of

this, Animators and KeyframeSequences are independent of the data that they may be applied

to. As an example, if a specific instance of a keyframe sequence is made for 32-bit float data;

this keyframe sequence could then be attached to any OpenSG field that is a 32-bit float. So,

for all of the data types supported by keyframe sequences, any OpenSG field of those types

can have an animation attached to them. Figure 3.1 shows the UML class hierarchy of the

animations library.

Keyframed animations can be applied using different interpolation methods. Step, linear,

and cubic interpolation is implemented for all math types, and step is implemented for all

other types. Keyframed animations can be applied using different methods for how to replace

26

Figure 3.1 Class hierarchy of Animations

the data they are animating; these are overwrite, additive, and additive-since-last. Overwrite

will replace the value of the data being animated. Additive adds the value interpolated by

the keyframe sequence to the data being animated (only defined for types with an addition

operator). Additive-since-last adds the difference of the value interpolated by the keyframe

sequence last frame and the current frame to the data being animated (only defined for types

with an addition operator).

Multiple animations that act on the same field can be blended using the BlendedKeyframeAn-

imator. The BlendedKeyframeAnimator is a realization of the Animator interface that contains

a collection of KeyframeAnimators and floating point weights for each. Only Animators that

work on types that have addition and multiplication operators defined on them can be used

by the BlendedKeyframeAnimator. BlendedKeyframeAnimator calculates the weighted sum

of the interpolation value for animator it contains. The weighted sum is used as the value used

by the replacement policy of the animator.

27

Morphs and Deformable Geometries

Deformable geometries are dynamic 3D geometries [?]. They are created by weighting the

vertices of a mesh geometry to transformation nodes. The transformation nodes attached to a

deformable geometry are called joints, and the total collection of joints called a skeleton. When

constructing the deformable geometry the geometry is bound to the skeleton in the skeleton’s

bind pose. The bind pose represents the transformations of joints in the skeleton that would

not apply any transformational change to the geometry, i.e. identity transformations. The

geometry is bound to the skeleton by defining weights to each of the joints in the skeleton, for

most joints in the skeleton the weight on a particular joint will probably be zero. For joints

that are close to the vertex, then the weight value may be greater than 0. If a joint has a 0

weight affect on a vertex, then the joint weight is not attached to save memory. When joints

in the skeleton move then the vertices, and normals of the geometry need to be updated. We

developed support for deformable characters for the OpenSG libraries.

Geometry morphs are dynamic 3D geometries. Morphs are constructed from a base geom-

etry, and any number of target geometries. There are weights that can be assigned for each of

the target geometries. The geometry rendered for a morph is the sum of the base geometry

and the weighed difference of the target geometries with the base geometry. Animating the

weights associated with each target geometry can smoothly bring out the feature differences

of the target geometry compared to the base geometry. Figure 3.2 is the UML class diagram

for morph and deformable geometries. Figure 3.2 is the UML class diagram for morph and

deformable geometries.

Advanced Particle System

Particle systems can be used to simulate and render complex particle phenomena. Particle

systems consist of a group of particles that each have the properties listed in Table 3.1. Particle

systems also contain generators for the creation of new particles and affecters for modifying

the properties of particles. A particle system is managed independently from how it is drawn.

Figure 3.3 shows the UML class diagram of the particle system library.

28

Figure 3.2 Class Hierarchy of Deformable Geometries and Morphs

Table 3.1 Particle properties

Property Type

Position 3D point

Secondary Position 3D point

Normal 3D vector

Color 4D Color (RGBA)

Size 3D vector

Age float

Lifespan float

Velocity 3D vector

Secondary Velocity 3D vector

Acceleration 3D vector

Attributes String to unsigned integer map

Particle generators generate new particles. The properties of new particles from are gen-

erated from 1,2,or 3D distributions. Such as lines, boxes, spheres, cylinders, Gaussian, convex

volumes, 3D-Surfaces, etc. Each particle property can be generated from a different distri-

bution. So the position can be generated from a box, velocity from the surface of a sphere,

and color from a box localized in RGB colorspace. Particle generators can be attached to

a beacon node in the scene graph. The local-to-world transformation of the beacon node is

used to transform the generated position, normal, velocity, and acceleration properties of the

generated particle. The rate of particle generation is also handled by particle generators. The

RateParticleGenerator generates a given number of particles per second. The BurstParticle-

Generator generates a given number of particles the instant it is attached to a particle system.

Particle generators are attached to a particle system and are updated every frame to see if

29

Figure 3.3 Class hierarchy of Particle System

new particles are generated. When a particle generator is finished generating particles it is

detached from the particle system.

Distributions are the class of objects used by particle generators to produce a 1,2, or 3

dimensional vector of floats from a specific distribution. Every time a distribution is called to

generate a value, usually be a particle generator, a new random value within it’s distribution

is generated using pseudo-random techniques. As an example, a box distribution will generate

a point within a box, it may produce a different point the next time it is called to generate a

point, but the distribution of points generated will have a uniform distribution within the box.

This can be used by ParticleGenerators to use a Gaussian distribution for a particles position,

a Spherical distribution for a particles velocity, a Box distribution for a particles color, etc.

The dimensions of the distribution attached to a specific property of a particle system must

match the dimensions of the property, so only 3D distributions can be attached to the position

property of a ParticleGenerator, and only a 1D distribution can be attached to the lifespan

property of a ParticleGenerator. Table 3.1 indicates the dimension of each property’s type.

ParticleAffectors. A class of objects that affect the properties of particles in a PS. Par-

ticleAffectors affect a particle independently of all other particles. ParticleSystemAffectors

are a class of objects that affect the properties of particles of a PS as a whole. ParticleSys-

temAffectors can affect particles with respect to all other particles in a particle system. An

example of this is the GravityParticleSystemAffector that models a PS as a system of point

30

masses, and calculates the gravitational force applied on each particle by every other particle.

ParticleAffectors are attached to a particle system and are updated every frame. When a

ParticleAffectors is finished it is detached from the particle system.

Particle drawers are a new OpenSG node type that are attached to a particle system to

draw it. There are particle drawers for drawing particle systems as points, lines, quadrilaterals,

disks, or as cloned nodes of the scene graph. ParticleDrawers are a class of objects that can

draw a particle system in a specific way. Particle systems can be used to simulate all kinds

of particle phenomena. These include an explosion, fire, smoke, Meteorlogical effects like rain,

snow, and hail, a school of fish, and many others.

Importing Digital Assets

COLLADA is a royalty-free XML schema for digital assent exchange. COLLADA is used

by many real-time 3D developers to exchange assets from digital content creation tools into

real-time 3D engines. OpenSG already has support for importing geometry and material

content from COLLADA files. We extended the OpenSG COLLADA importer to support

the importing of animation elements, shader elements for Cg effects, and controller elements

morphs and skins.

Scripting Language

To facilitate the data-driven design of the KabalaEngine a scripting language was inte-

grated. Scripting languages considered were Lua, Python, ECMAScript (Javascript), Action-

Script, PHP, Ruby, Perl, Java, Tcl, and Go. Lua was chosen as the scripting language. This

is because Lua is a small and relatively easy language that is still Turing complete, creating

bindings is easier than most other languages, Lua was designed from the ground up to be em-

bedded, and it has fast and small interpreters and just-in-time compilers. Lua bindings were

generated using the Simplified Wrapper and Interface Generator(SWIG), and a SWIG inter-

face definition file. Other scripting languages, such as Python, Ruby, Java, and more, could

be integrated by using the SWIG interface definition file and SWIG to generate the bindings

31

for that language.

The data reflexive features of OpenSG was utilized to simplify the Lua bindings. A generic

method for getting and setting the value of a named field of a FieldContainer was written.

Because Lua is a dynamically typed language the getting and setting methods could return,

and receive parameters of different types without defining a method for each type as would

be required by a statically typed language. This allows the get method to return an number

when the queried field is a number, and a string when the queried field is a string. This also

greatly simplifies the process of using OpenSG libraries that were not constructed with Lua

bindings. This is because the getting and setting methods are generic for any FieldContainer

instance and so would work for any new FieldContainer type.

Sound

The sound library integrates sound playback with the scene graph. An abstract inter-

face was written to control sound playback with an abstract SoundManager and Sound. The

SoundManager handles creating concrete sounds, making the real-time updates to the sound

subsystem, tracking the listener position, and initializing/deinitializing. The new Sound

FieldContainer is an abstract interface for sounds that can be used to observe and modify

sounds. SoundEmitters are a new scene graph node that can have a Sound emitted from

them. SoundEmitters play a sound at the virtual location in 3D space that the emitter is

located in the scene graph. When SoundEmitters are updated each frame, the emitted sounds

are updated to take into account the changes in position and orientation of the listener and

SoundEmitter node. Moving a sound can be achieved by changing the transformation of the

SoundEmitter node in the scene graph. The node used by the scene graph for the camera is

used as the listener position. The SoundManager and Sound abstract interfaces were used to

add support for the Fmod sound library, and could be used to support other low level sound

libraries. Figure 3.4 shows the UML class diagram of the primary components of the sound

library.

32

Figure 3.4 Class hierarchy of Sounds

Video

The video library integrates video playback with OpenSG textures. An abstract interface

was written to control video playback. VideoTextureObj is a new type of TextureObj in

OpenSG that can be used anywhere a texture can be used. In this way a video can be used for

data as though it was a texture. The abstract interface was implemented for the VideoLAN

(VLC) libraries, which is cross-platform supported, and the DirectShow framework, which only

has Miscrosoft Windows support. Figure 3.5 shows the UML class diagram of the primary

components of the video library.

Physics

The physics library OpenDynamicsEngine(ODE) was integrated with OpenSG. ODE sup-

ports real-time simulation of rigid body dynamics and collision detection. Behboud Kalantary

created a physics library that combined the ODE library with OpenSG 1.8. Nodes in the scene

graph can have physic characteristics attached to them. The PhysicsBody attachment contains

rigid body definitions of ODE, including mass and center of gravity. PhysicsGeom attachments

contain the definitions for collision geometry. PhysicsJoints attachments define how Physics-

33

Figure 3.5 Class hierarchy of Video

Bodies can be constrained with other PhysicsBodies or the simulated physics world. The ODE

physics simulation is executed by a new scene graph traversal that iterates the physics collision

and simulation loop. After updating the collision and physics simulation the traversal updates

the transformations of nodes in the scene graph that have a PhysicsBody attached to them.

We added support for using ODE with OpenSG 2.0, drawing the physics characteristics, the

generation of events from collisions based on the nature of the collision. Figure 3.6 shows the

UML class diagram of the primary components of the physics library.

User Interface

The user interface library used by the KabalaEngine is a library build on top of OpenSG.

A separate paper describing this library has been submitted to UIST 2011.

Generic FieldContainer GUI

The graphical user interface library for OpenSG was used to make a generic editor for

FieldContainers. Most classes in OpenSG are derived from FieldContainer. They contain a

collection of fields, where each field has a name, type, description, and concrete data value.

FieldContainers are data-reflexive because the definition of the fields present on a FieldCon-

34

Figure 3.6 Class hierarchy of Physics

tainer can be queried at run-time. The data-reflexive nature of FieldContainers was utilized to

implement a generic editor for FieldContainers. Figure 3.7 shows the generic FieldContianer

GUI attached to the viewport of a scene.

Each field in a FieldContainer has a specific type, but the values of a field can be observed

and modified by converting their values to and from a string. The generic FieldEditor uses only

a textfield. The text of the textfield is filled with the text conversion of the field attached to it.

Using this generic FieldEditor every field can be edited. However, there are usually better GUI

elements that can be used. FieldEditors were made for number types that use a spinner GUI

element, multi-dimensional vector types use a spinner for each dimensional element, color types

that use a color selection dialog, matrix types that use a spinner for each of the translation,

rotation, and scale affine decompositions of the matrix.

FieldEditors are can only be created from the FieldEditorFactory. The FieldEditorFactory

takes a pointer to a FieldContainer and the index of the field to create a FieldEditor for. The

FieldEditorFactory returns an instance of a concrete FieldEditor that can be inserted into a

GUI panel. The FieldEditorFactory contains a map that stores the type of FieldEditor to use

35

Figure 3.7 Generic FieldContainer Editing Interface

for a field type, there can be more than one type of FieldEditor used for the same field type.

For each field type there is a default FieldEditor type associated with it, this can be changed

at run-time by user code. For field types that have more than one type of FieldEditor, the

FieldEditors are differentiated by names.

Using the FieldEditorFactory a generic FieldContainerEditor was created. The generic

FieldContainerEditor takes a pointer to a FieldContainer, it then iterates over all the fields for

that type of FieldContainer. For each field the generic FieldContainerEditor uses the FieldEd-

itorFactory to create a FieldEditor for that specific field. The returned FieldEditor is placed

in a GUI panel. The FieldContainerEditorFactory behaves the same as FieldEditorFactory

except if uses FieldContainer types and FieldContainerEditor types.

The right panel in Figure 3.7 shows an example of a generic FieldContainerEditor attached

to a viewport FieldContainer. The names of the fields are listed left, right, bottom, top,

camera, root, background, foregrounds, travMask, enabled, and renderOptions. Next to the

names of the fields are the specific field editors for that field. For the left, right, bottom, and

top fields there are spinner FieldEditors because those fields are numbers. The enabled field

uses a checkbox FieldEditor because it has a boolean type. The camera, root, background,

36

and foregrounds fields use a FieldEditor specific for fields that have a type that points to a

FieldContainer.

KabalaEngine Architecture and Interfaces

Project Player

The KabalaEngine constructs applications into projects. The KabalaEngine uses the Player

feature to play a project. The play attaches the project to the root window of the window the

KabalaEngine is running in. The Player handles starting, stopping, reseting, and pausing a

project.

Project, Scenes, SceneObjects, Effects, Behaviors

A project is made up of a collection of scenes. Only one scene can be active at a time in

a project; the project manages the transitions between scenes by entering and exiting them

them. Projects also hold a collection of global assets, listed in Table 3.2, that can be accessed

by any scene.Figure 3.8 shows the UML class diagram of projects, scenes, scene objects, effects,

and behaviors.

There are several events that a project can produce. Table 3.3 lists the type of events that

projects can produce. The Started event of a project is produced when the Player starts the

project. The Stopping event is produced when the Player is about to stop a project, and the

Stop event when the Player has stopped the project. Reset is produced by a project when the

reset method is called on the project, this may be called by a script. SceneChanged is produced

by a project when the project has changed the active scene. ScenesChanged is produced when

a scene is added, removed, or moved in a project.

Scenes contain a collection of SceneObjects, scene specific assets, viewports, and scene-wide

physics properties. Table 3.4 shows the types of events that scenes produce; in addition, scenes

also produce all of the mouse, key, and window events be connecting the origin producers of

these events. When a project makes a scene active, it first checks that the scene has been

started, if not then it invokes the start method of that scene. Then the project invokes the

37

Table 3.2 Asset types

Scene graph nodes

Foregrounds

Backgrounds

Images

Textures

Sounds

Particle systems

Materials

Animations

Graphical user interfaces

Videos

Table 3.3 Project Events

Started

Stopping

Stopped

Reset

SceneChanged

ScenesChanged

Table 3.4 Scene Events

Entered

Exited

Started

Ended

Reset

enter method to the scene. This allows scenes to initialize assets only once, in the start method.

When a project deactivates a scene it invokes the exit method on the scene. Finally, when

a project is reset or stopped it calls the ended method of all scenes that have been started.

When these respective methods are invoked the coresponding event is produced as listed in

Table 3.4.

SceneObjects hold a pointer to a 3D node representing the object, SceneEffects, and Be-

haviors. The 3D node of a SceneObject is attached to the scene graph used by the scene.

Table 3.5 shows the types of scene object effects available. Table 3.6 shows the events that

Scene object effects can produce. SceneEffect is an abstract class that has start, stop, pause,

and reset methods. The SceneEffect produces the corresponding events when these methods

are invoked. In addition, SceneEffects produce the Finished event as defined by the specific

type of effect they are emulating. For the SoundSceneEffect the Finished event is produced

when the sound played has reached the end. The SequentialSceneEffect and ConcurrentSce-

neEffect contain a collection of SceneEffects. The SequentialSceneEffect, when started, starts

the first SceneEffect in it’s collection, waits till that effect has produced a Finished event, and

then starts the next in the sequence until it reaches the last. When it reaches the last then

it produces it’s own Finished event. The ConcurrentSceneEffect, when started, loops through

all of it’s SceneEffects and starts them. It then waits for all of them to produce their Finished

event before it produces it’s own Finished event.

38

Figure 3.8 Class hierarchy for Project

Class hierarchy of Project, Scene, SceneObject, SceneEffect, and Behavior

Table 3.5 Specific Types of SceneEffects

Play/stop/pause/unpause sound.

Start/stop/pause/unpause animation.

Physics impulse.

Lua script.

Particle system effect.

Sequential effect.

Concurrent effect.

Table 3.6 Scene Object Effect Events

Started

Stopped

Paused

Unpaused

Finished

Control Loop

The main loop of the KabalaEngine is managed by the root window of the application.

The window loops through handling events, updating, and rendering as shown in pseudocode

listing 3.1. The handling of events by a window involves producing any input or window specific

events. These can include mouse, key, mouse wheel, and window events. The update method

simply produces an update event that encapsulates the elapsed time since the last time the

update event was produced by the window. Finally, the window invokes the render method

attached to it and iterates the loop.

Projects attach event handlers to the mouse, key, mouse wheel, and window events pro-

duced by the root window. The project reproduces these events, with the same details, itself.

39

Algorithm 3.1 Window main loop pseudocode

while the application is running do

while the event queue is not empty do

handleEvent(getNextEvent())

end while

produceUpdateEvent(getElapsedTime())

render()

end while

However, projects have a BlockInput flag that, if true, will cause the project not to reproduce

any events. Scenes also attach event handlers to the mouse, key, mouse wheel, and window

events and reproduce them in the same way as the project. However, scenes only reproduce

events from the root window when they are active. This is useful because specific event han-

dlers can be attached locally to the mouse, key, mouse wheel, or window events of a scene or

project. Then if the project or scene block input of those events, it does not cause the blocking

of event handles attached to the root window or other scenes. Using this, event handlers can

be attached to specific scenes, but do not need to be detached when the scene is no longer

active because that scene will not reproduce those events unless it is active.

Objects that need to be updated can attach to the window, project, or scene. Examples

of objects that require updates are SoundManager, dynamic ParticleSystems, active Vide-

oWrapperTextures, active Animations, PhysicsHandlers, SceneEffects, and any user-defined

LuaBehavior that depend on the update event. The update is produced once per loop of the

main loop before the scene is rendered.

Run-time debugger

A Run-time debugger interface was created for expert users to make modifications and

introspect properties of a running project. This interface was defined for moderate to expert

users. When a project is running, a configurable input sequence can bring up the debugger

interface, drawn as a foreground, in the root window that the project is running in. Figure 3.9

shows the debugger interface. The debugger interface is divided into three primary regions:

40

scene graph tree (left), utilities tab panel (bottom), and the content view panel (center). The

debugger interface also includes a menubar at the top of the window.

Figure 3.9 KabalaEngine Debug Interface

KabalaEngine Debug Interface for Intermediate-Expert Users

Content View Panel

Direct manipulation of objects in the scene. Users can directly manipulate scene

graph nodes in the scene. This is done by first selecting a scene geometry, light, camera, or

particle system. A node can be selected by clicking on the screen drawing of it’s geometry

directly or selecting the appropriate node in the GUI tree. Once selected the triangle mesh

of the geometry, bounding volume, and local coordinate frame are rendered. If the selected

scene graph node can be transformed then the manipulator interface is rendered. There are

translation, rotation, and scale manipulators. Only one of these types of manipulators is active

at once, the user can switch between the type of manipulator by using the t, r, and s keys.

The user can use the mouse to click and pull on the manipulators to apply changes to the

transformation of the selected scene graph node.

41

Scene graph GUI tree

The structure of the scene graph can be changed by the user. This includes creating new

nodes, removing nodes, copy and pasting nodes, importing a model file, hiding/showing a node,

and apply advanced graph traversals. The scene graph is presented in a tree GUI element in

the left panel of the debugger interface shown in Figure 3.9. The user can expand/collapse

nodes in the GUI tree to observe the children of nodes in the scene graph. A right-click menu

provides actions for hiding/showing a node, copy, cut, paste, and deletion of a node, importing

model files into the scene graph, exporting to a file, and several graph traversal methods.

Utility Tab Panel

Lua debugging utilities The bottom portion of the debugger interface shown in Fig-

ure 3.9 contains a tab panel with a Lua console, Lua error text field, Lua stack trace, a Lua

data introspection tree, log panel, and scene graph properties panel. The Lua console contains

a text field where Lua code can be typed and an execute button for executing the Lua code.

The Lua error text field provides a detailed description of a Lua error if an error occurs when

executing error code. Also, the Lua stack trace panel provides a stack trace of the Lua func-

tions when a Lua error is produced. The Lua data introspection tree is a tree GUI element

that is rooted at the global data table of the running Lua context. The introspection tree can

be used to observe the names, types, and values of all values that are attached to the global

Lua context.

Main Menubar

The main menubar of the debugger interface contains Project, Edit, Scene, Statistics, and

Toggle menus. The main menu bar can be seen at the top of Figure 3.9.

Project Menu The following is a list of the menu items in the Project menu actions

preformed when selected.

• Open Project. Opens a file selection dialog window to select a project to load.

42

• Save Project. Saves the current project to a file.

• Save As Project. Opens a file save dialog window to save the current project.

• Reset. Exit the currently active scene, stop all scenes that have been started, reset all

scene, and then activates the initial scene.

• Force Quit. Closes the KabalaEngine.

Undoable actions. An important consideration from direct manipulation theory are

that user actions can be undone if there is an error. The run-time debugger implements most

user actions in a way that can be undone. This is done by extending the use of the strategy

design pattern as described by [Gamma et al. 1995]. All user actions are encapsulated into

objects of Command or UndoableCommand types. Command defines an abstract interface

for executing some action. Commands are executed by a CommandManager. UndoableCom-

mands inherited from Command and add an interface to undo and redo the action performed

when the CommandManager executes the UndoableCommand. An UndoManager stores Un-

doabledCommands as they are executed so that they can be undone or redone according to

the order they where originally executed.

An example of an undoable command is the manipulation of the transformation of a node

in the scene graph. Users can directly translate, rotate, and scale nodes in the scene graph.

When this is done an UndoableCommand is created with the details of the manipulation. The

UndoableCommand is executed and added to the UndoManager. The user could then undo

and subsequently redo the application of this transformation by invoking the undo/redo menu

items.

Conclusions

The source code repository for OpenSG can be obtained at http://github.com/djkabala/

OpenSGDevMaster_Toolbox. The source code repository for the OpenSGToolbox can be ob-

http://github.com/djkabala/OpenSGDevMaster_Toolbox
http://github.com/djkabala/OpenSGDevMaster_Toolbox

43

tained at http://github.com/djkabala/OpenSGToolbox. The source code repository for the

KabalaEngine can be obtained at http://github.com/djkabala/KabalaEngine.

Future Work

The interface uses primarily a WIMPS-base style which is very useful for work on desktops,

it doesn’t have a specialized interface for using the Builder in a virtual reality system or hand-

held devices. The Builder does not have a easy user interface for dynamic relationships such as

animations, particle systems, and scripts. The KabalaEngine run-time dubugger supports this

through a generic ”expert” user interface. Currently there is not a large user community for

the KabalaEngine. The importing of assets can be cumbersome. To run a project in a virtual

reality system the system requires VR Juggler.

Acknowledgements

The authors would like to thank Achyuthan Vasanth, Daniel Guilliams, Robert Goetz, Eric

Langkamp, and David Naylor for there contributions of source code. The authors would like

to thank William Schneller, Amy Dixon, and Heidi Sinsel for their work designing the look

and feel and the KabalaEngine logo. The user interface library is released under the General

Public License version 3.

References

Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., and Cruz-Neira, C. 2001. Vrjuggler:

A virtual platform for virtual reality application development. In Proceedings IEEE Virtual Reality.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., Durbin, J.,

Gossweiler, R., Koga, S., Long, C., Mallory, B., Miale, S., Monkaitis, K., Patten, J., Pierce,

J., Shochet, J., Staack, D., Stearns, B., Stoakley, R., Sturgill, C., Viega, J., White, J., and

Williams, G. 2000. Alice: Lessons learned from building a 3d system for novices. In Conference on Human

Factors in Computing Systems: Proceedings of the SIGCHI conference on Human factors in comput.

http://github.com/djkabala/OpenSGToolbox
http://github.com/djkabala/KabalaEngine

44

Cruz-Neira, C. 1995. Virtual reality based on multiple projection screens: The cave and its applications to

computational science and engineering. Ph.D. thesis, University of Illinois at Chicago.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley.

Kepler, J. 2009. A collaborative interaction framework for networked virtual environments. Ph.D. thesis,

Universität Linz.

Reiners, D. 2002. Opensg: A scene graph system for flexible and efficient realtime rendering for virtual and

augmented reality applications. Ph.D. thesis, Technischen Universität Darmstadt.

45

CHAPTER 4. CREATING A GRAPHIC USER INTERFACE FOR

VIRTUAL REALITY AUTHORING: AN OVERVIEW AND ANALYSIS

OF THE KABALAENGINE WORLD BUILDER

A paper to be submitted to ACM VRST 2010

David J. Kabala 1 2, Julie Dickerson 3, and Stephen Gilbert 4

Abstract

Developing applications for Virtual Reality systems is difficult because of the hardware

required, complexity of Virtual Reality software, and the technical expertise required to use

them. The KabalaEngine Builder has been designed to support the development of Virtual

Reality applications by novice users. The KabalaEngine is an open source application that

allows users to build virtual environments with multimedia content and interactive components

into a user-created application. Once the relationships have been designed, the engine can

then run the user-created application in a virtual reality system equipped with a VR Juggler

configuration.

Introduction

It is a goal of virtual reality research to make authoring virtual environments easier. Ideally,

anyone that has an idea for a virtual environment should be able to create that environment

1Human Computer Interaction Program, Iowa State University, Ames, Iowa
2Author for correspondence
3Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa
4Department of Psychology, Iowa State University, Ames, Iowa

46

easily. There are many barriers to this: the hardware is expensive and complicated, the soft-

ware for running the hardware is also expensive and/or complicated, multimedia content is

expensive or nonexistent, and their is no large community of novice virtual reality develop-

ers. There is a lack of VR frameworks that contain a comprehensive set of multimedia and

computational for novice users of the framework. Designers of the KabalaEngine define novice

users as those who are comfortable using graphical user interface(GUI) applications like of-

fice productivity software and internet browsers but may not necessarily have experience with

computer programming or other technical computer training. We have chosen this group of

users because there is currently no means for such a user to develop a Virtual Reality(VR)

application. We define VR systems as systems that achieve a high level of immersion through

graphics, sound, haptics, other displays, and a simulated environment that affects users with

a high level of presence.

We have developed the KabalaEngine and supporting libraries to ease the complexities

of authoring for virtual reality experiences. The KabalaEngine was built using OpenSG for

clustered support. Because of this, several libraries were contributed to OpenSG that add

features and still provide clustered support. The libraries added animation, particle system,

3D graphical user interface, sound, video, and physics support. The KabalaEngine uses these

libraries to construct projects from a collection of scenes. The KabalaEngine can play the

projects in a virtual reality system that has a VR Juggler configuration.

Using the KabalaEngine as the supporting architecture we have designed and implemented

a graphical user interface for novice users called the KabalaEngine Builder. The builder

presents an interface that users can use to create virtual environments. The cross-platform and

data-driven design of the KabalaEngine, and supporting libraries, makes the builder available

on Windows, Linux, and OS X operating systems. The projects can be created on one system

and then moved and edited on another system. This is useful because users can create virtual

environments on low cost, easily accessible systems and then move the created project onto

complicated virtual reality systems when the systems are accessible.

In the following sections we will detail related work, the design and implementation of the

47

Builder interface, describe our evaluation study, and discuss the findings from the study.

Related Work

3DVIA Virtools is large commercial product for authoring VR applications. Virtools

has support for modern 3D graphics, physics, animations, scripting (via a proprietary, in house

language), particle systems, clustering support, and many others. Virtools is closed-source,

potentially very costly, and targeted more to expert users. The price for deploying virtools

increases with the number of GPUs.

Alice is a teaching tool designed for introduction to programming using a 3D and drag-

and-drop interface[Conway et al. 2000]. Alice was originally developed as a tool for fast pro-

totyping for VR systems[Pausch et al. 1995]. Alice is not clusterable, has moved to a desktop-

only application. Alice is open-source but does not take contributions. Alice does not support

physics, morphs, deformable geometry, particle systems, clustering, or video playback as tex-

tures in scene. The software does allow users to create videos from animation they create.

Croquet and Cobalt Croquet is an Software Developer’s Kit (SDK) for collabora-

tive work between teams of workers that is implemented in Squeak Smalltalk. Croquet uses

OpenGL for rendering and includes support for many GUI elements: buttons, textboxes,

windows, etc. Croquet was built for communication, collaboration, resource sharing, and syn-

chronous computation among multiple users. Applications created with the Croquet SDK

can be used to support scalable collaborative data visualization, virtual learning and prob-

lem solving environments, 3D wikis, online gaming environments (MMORPGs), and privately

maintained/interconnected multiuser virtual environments[Smith et al. 2004]. Croquet is no

longer under development, but now the open Cobalt project[Lombardi and Lombardi 2010]

has taken up Croquet and is in alpha release.

48

Design Principles

We defined a set of principles to use when designing the builder interface. These design

principles were selected and modified from best practices described by Shneiderman 1987

• The interface should be familiar to users. This is an effort to keep novice users comfort-

able by providing an interface with interaction methods and a display format that users

have some experience with.

• The interface should use direct manipulation for modifying graphical, 3D properties. The

editing of 3D properties of objects is complicated and error prone through command line

and menu-stye interfaces. A direct manipulation interaction style would allow users to

immediately observe the changes made to objects in 3D space.

• The interface should assist the user with errors by allowing actions to be easily reversible.

It is important to reduce the user anxiety of doing something wrong by making actions

reversible and to have the capability of saving the project to a file.

• The interface should assist novice users of VR authoring. We will attempt to reduce

short-term memory load by keeping the interface simple and dividing it into logical

sections.

• Use menus for separating similar but distinct components. For actions where there is

potentially a large number of options to choose from, menus will be used to logically

categorize them. This is an important part of keeping the interface simple and uncluttered

KabaleEngine Builder Interface

The interface we developed for novice users is a graphical user interface that makes up

what we call the KabalaEngine Builder. The KabaleEngine Builder interface was designed to

support the following features: create projects, create/remove scenes, add/remove 3D objects

in the scene, move objects in the scene, direct manipulation of 3D objects, reversable errors,

modify physical attributes of objects in scene, and can save/play a project. In addition the

49

interface should allow editing properties of cameras, lights, scene objects, scenes, backgrounds,

and foregrounds.

Figure 4.1 shows the final design of the GUI for the KabalaEngine Builder. The Interface

is divided up into four primary sections, and other utility areas. The four primary sections are

the project view panel (Figure 4.1A,) editor view panel (Figure 4.1B,) 3D scene view panel

(Figure 4.1C,) and the scene components panel (Figure 4.1D). The interface is designed for

editing a project. Only one scene of a project can be edited at any one time. Users must select

which scene is to be edited, this is called the selected scene.

Figure 4.1 KabalaEngine Builder Interface

(A.) Project editor panel. (B.) Scene components panel. (C.) 3D scene view panel. (D.)

Editor view panel.

Project view panel (4.1A) The project view panel provides an interface for users to

add and remove scenes from the project, and to change the currently selected scene. Scenes are

arranged in a table format in the order they were created, the order of the scenes in the table

is not significant. Each of the scenes in the table have a display image and label to represent

them. The display image for a scene is a rendering of the scene. The display images of scenes

50

that are not selected are rendered darker than normal to indicate they are not selected. To

add a scene users press the “+” button next to the “Scenes” label. A scene can be removed

by pressing the “-” button that appears on a scenes display image when the mouse is hovered

over the display image for the scene. A scene can be selected for editing by pressing the scene

display image.

Scene components panel (4.1B) The editor view panel provides users with an in-

terface to select a logical component of the selected scene to edit and for adding/removing

components. Users can edit the basic scene properties of foregrounds, background, scene cam-

era, scene objects, and lights. The components are arranged in a tree interface with a depth

of two. Components that a scene can have multiples of, foregrounds, scene objects, and lights,

can be expanded in the tree interface to show all of their instances. Users can create new

instances of foregrounds, scene objects, or lights by pressing the “+” button next to the com-

ponent type. Also, the components can be removed from the scene by pressing the “-” button

to the left of the corresponding component.

Selecting a scene component will fill the editor view panel with the specific editor interface

for that component. When the camera, a scene object, or a light component is selected in the

tree, then that component will also indicate it’s selection in the 3D scene view panel. For the

scene object components, the mesh of the geometry is rendered in pink and the bounding box

in teal.

3D scene view panel (4.1C) The 3D scene view panel provides users with an interface

to select and move scene objects, lights, and the camera. The 3D scene view uses visual

annotations to give the user information about the editing area and the objects they are

editing. None of these visual annotations are rendered when the project is played. The grid

visual annotation is located on the XZ-plane; it is used to orient the user with the origin in

world space and is used as a spatial reference when moving objects around. The camera for

the scene has a visual annotation, 3D model of a camera, that is drawn at the location and

orientation of the camera. Lights also have visual annotations similar to the camera, but use

51

different graphical representations based on the type of the light (point, directional, or spot).

The 3D scene view panel has a toolbar at the top for applying actions to the 3D view.

The icons and actions of each of the buttons is listed in Table 4.1. The split toolbar button

can split the view into a single, two-by-one horizontal, one-by-two vertical, or a two-by-two

view. Figure 4.1 shows the 3D view panel with the two-by-two split configuration, however,

by default the application starts with the single, or no split, configuration.

Table 4.1 3D Scene View Panel Toolbar Buttons

Button Action

Splits the view between four configurations

Focus view on selected component

Edit the view configuration

Switch to fullscreen mode

Activate the translate transformation mode

Activate the rotate transformation mode

Activate the scale transformation mode

Objects in the scene can be selected using the left-mouse button. The object in the scene

that has the closest intersection with a ray cast as a projection of the mouse is selected.

Selecting a scene object will cause the selection visual annotations pink mesh, teal bounding

box, for that scene object to be rendered. In addition, the corresponding element in the

scene components panel will also be selected. Depending on the type of the transformation

mode (translate, rotate, or scale) the visual manipulators for that transformation mode will

be rendered.

There are three types of transformation modes for scene objects, cameras, and lights; they

are translation, rotation, and scale. Figure 4.2 lists the transformation modes and the graphical

52

manipulators used for editing them. The axis that the manipulator component is constrained

to is denoted by it’s color: red for the x-axis, green for the y-axis, and blue for the z-axis. The

Scale transformation node has an additional manipulator that is teal for scaling in all 3 axes

uniformly. The manipulators are used to edit the local space transformations of the object

they are connected to.

Users can change the view position and orientation in the 3D scene view panel. The view

can be moved by dragging with the left mouse button; this will translate the view in a direction

perpendicular to the view direction. The view can be rotated by dragging with the right mouse

button; this will rotate the camera around the point it is focused on. The view can be moved

towards and away from the focus point with the mouse scroll wheel. Additionally, the user can

focus the view on the selected component (scene object, light, or camera) by using the “Focus

view” toolbar button listed in Table 4.1. The “Focus View” toolbar button has an icon that

looks like an eye.

(a) Translation Manipulator (b) Rotation Manipulator (c) Scale Manipulator

Figure 4.2 Transformation Direct Manipulation Tools

The user interacts with the manipulators with the mouse. When the mouse hovers over the

manipulator, then the manipulator color is changed to a dull yellow and reverted back when

the mouse is no longer over the manipulator. The area that the mouse can hover over the

manipulator is larger than the rendered geometry; there is a separate collision geometry that

53

is scaled larger then the rendered geometry. When the user interacts with a manipulator by

clicking and subsequently pulling, the manipulator is drawn in a bright yellow.

The manipulators are drawn to follow the object they are editing in screen space. This

means that the rendered size of the translation, rotation, or scale manipulators does not change

based on the distance from the editing object and the view camera.

Editor view panel (4.1D) The editor view panel provides users with an interface to

edit the specifics of the particular scene component that is selected in the scene components

panel. The editor changes when the selection of the scene components panel changes. There

are different interfaces that fill the panel depending on the type of the scene component that

is selected. There are interfaces for scene object, light, background, foreground, scene, and

camera. Figure 4.3 and Figure 4.4 show the interfaces for those component types.

(a) Scene Editor (b) Scene Object Editor

Figure 4.3 Transformation Direct Manipulation Tools

The scene editor interface in Figure 4.3(a) can be used to edit the name and physics

54

(a) Background Editor (b) Camera Editor

(c) Light Editor

Figure 4.4 Transformation Direct Manipulation Tools

properties of a the selected scene. The physical properties of a scene that can be edited are

the direction of gravity in world space and whether the physics simulation is enabled for the

selected scene.

The scene object editor interface in Figure 4.3(b) can be used to edit the name, transfor-

mation, and physics-base properties of a the selected scene object. The translate, rotate, and

scale controls can be used to alter the local space transformation of the scene object. These

are the same properties that the transformation manipulators in the 3D scene view panel edit,

except that instead of using direct manipulation the user inputs the numerical values directly.

The physical properties of a scene object that can be edited are the mass, whether the object

is collidable with other objects in the scene, and whether the object is affected by gravity.

55

The background editor interface in Figure 4.4(a) can be used to edit the name, type,

and color properties of the selected background. The combobox GUI element can be used to

changed the type of the background, when the type of the background is changed then the icon

to the left of the type also changes. Pressing the button for the background color will open up

a color chooser dialog window that can be used for selecting the color.

The camera editor interface in Figure 4.4(b) can be used to edit the name, type, field of

view, and the transformation of the camera. The translate, rotate, and scale controls are used

in the same was as for scene objects. Changing the type of the camera behaves the same way

as for backgrounds.

The light editor interface in Figure 4.4(c) can be used to edit the name, type, enabling,

colors, and the transformation of the light. The translate, rotate, and scale controls are used

in the same was as for scene objects. Changing the type of the camera behaves the same way

as for backgrounds. The ambient, diffuse, and specular color of the light open a color chooser

dialog window when pressed.

Main toolbar and menu Table 4.2 lists the icons and actions present in the main

toolbar. There are also corresponding menus in the main menubar for the window. The

bottom of the window contains a status bar where the status of operations performed by the

builder are notified to the user with use of text and a progress bar.

Undoable actions Most of the actions performed by the user are reversible. Using the

undo or redo button in the main toolbar or the undo or redo menu in the main menubar.

The undo and redo buttons and menus provide a short description of the command to be

undone/redone. For example, if the user creates a new scene in the project then the undo

button will have a tooltip with the text ”Undo create new scene” and similar text for the redo

button if applicable.

The design of the builder interface went through four iterations. Appendix D shows the

sketches of the builder interface from version 1 to the final version used in the study. During

the design and evaluation of versions 1, 2, and 3 the sketches were presented to a handful of

56

Table 4.2 Main Toolbar Buttons

Button Action

Open project from filesystem

Save project to filesystem

Create new project

Undo last edit

Redo last undone edit

Run the current scene in player mode

Open the help window

undergraduate students, digital artists, and Human Computer Interaction graduate students.

The input from these students was used to refine the subsequent versions.

Materials and Methods

Overview of the Study

We developed a user study to test the effectiveness of the Builder user interface, determine

the strengths and weaknesses, and to evaluate the complexity of virtual environments that

users could create in a limited time. Participants were given a set of introductory tasks, with

instructions, to study the effectiveness of the interface and to give the participants experience

with the application. After the introduction tasks, the participants were given the task of

developing a scene that could be used as a virtual environment. The users were given a post-

study questionnaire about (1) The effectiveness of the interface to perform the tasks, (2) the

quality of the scenes they created, and (3) the use of the KabalaEngine as a creative tool.

57

Apparatus

Participants used a 2008 MacBook Pro laptop with an NVIDIA GeForce 9600M GT graph-

ics card. A mouse was used because the KabalaEngine builder interface uses right mouse input

for some actions.

Procedure

Potential participants were contacted through e-mail from university mailing lists, fliers

placed around campus, and the psychology research student pool. Individuals that responded

were sent an email with a copy of the consent form, and times they could choose for partici-

pation. Upon arrival to the study, participants were given a hard copy of the consent form to

read and sign. Participants that consented were given a pre-survey about their age, sex, and

computer experience.

One experimenter was present in the user study lab. When participants arrived they were

given a document that contained an overview of the software, and a series of tasks to complete.

Appendix C is the overview and task document. The tasks were arranged into two sections.

The first 40 minute section contained five introductory tasks, these tasks were designed to

introduce the users to the features of the software. The participants were then given up to a

10 minute break. Next, participants started the second section task. The second section gave

users 50 minutes to use the software to create a new project with up to three scenes. For each

scene, participants were asked to create a scene from a set of scenarios. Participants were asked

to put 10-20 scene objects in each scene. After the second section participants were given the

exit survey with questions about the effectiveness/quality of the interface and their opinions

on it’s use. Appendix A was the survey given. The participants were finally given a debriefing

document and allowed to ask any further questions before leaving.

Participants were provided with a set of 3D models for use when performing the tasks. The

models were made up of animals, the video game Halo, indoor furniture, famous monuments,

generic humans, space, the movie Star Wars, and vehicles. The models were gathered from

the publicly available 3D model repository at http://sketchup.google.com/3dwarehouse/.

http://sketchup.google.com/3dwarehouse/

58

Measures

Participants were measured by means of a written questionnaire containing 5 point Likert

scale questions, and three written questions. Appendix A was the questionnaire given. While

the participants were using the application, their mouse input, keyboard input, and screen were

recorded with Morae screen recording software. The saved file for the project they created was

kept for analysis.

Participants

There were nineteen participants (9 male, 10 female; M(age) = 19.3, SD(age) = 2.3). Some

of the participants received course credit for their participation. Most (95%) of participants

rated themselves as moderate to expert computer users. Most (84%) of participants played

video games monthly or more, while 16% played video games rarely or never. Figure 4.5 shows

the responses of users to the computer experience question (Figure 4.5(a)) and the video game

experience question (Figure 4.5(b)).

(a) Computer Experience (b) Video Game Experience

Figure 4.5 Participant Experience

Results

The raw data from the survey is listed in Appendix B.

59

Task difficulty Most participants (79%) described the tasks as very easy, easy, or neutral

in difficulty, 21% described the tasks as difficult, and no participants described the tasks as very

difficult. All participants described the solution to performing the tasks to be straightforward

half the time, frequently, or always. Figure 4.6 shows the distribution of user’s answers to the

task difficulty (Figure 4.6(a)), and task solution straightforwardness question (Figure 4.6(b)).

(a) Task Difficulty (b) Staightforward Task Solutions

Figure 4.6 Task Survey

The response that participants gave for how engaging the virtual environments they created

were varied; 34% described it as not at all realistic or somewhat realistic, 50% neutral, and

17% realistic-very realistic. Figure 4.7 shows the distribution of user’s responses.

Figure 4.7 Project Realism

60

With the question of whether they would use the KabalaEngine Builder in their free-time

outside of work, 53% of users would use it monthly or weekly, while 48% would use it rarely

or never. Figure 4.8 shows the distribution of user’s answers.

Figure 4.8 Software Freetime Use

Created Users Projects

Figure 4.9 shows screenshots from the three scenes created by a single participant during

the 50 minute scene creation task. The screenshots were taken by moving the view so that

all of the objects in the scene were visible. For some scene objects, such as the green ground

plane, the screenshots cut off parts that were unnecessary. Figure 4.9(a) appears to be an

aquatic scenario, possibly a fish-tank-like scenario; the orca, clownfish, penguin, and the great

sphinx model were used. The clownfish appear to be schooling as predatory orca and penguin

pursue them. Figure 4.9(b) appears to be a generic park scenario. The park scene has a dog

and owner playing with a hoop and another dog and owner next to a car, oddly there is a

Harrier jet in the scenario. Figure 4.9(c) is a space battle made from models of a famous science

fiction movie. The scenarios created by this participant show that the user was comfortable

and skilled at placing, orienting, and scaling objects to create interesting environments. The

participant also changed the background color for each scenario to an appropriate color.

Figure 4.9 shows screenshots from scenes created by four different participants. The screen-

shots were taken in the same way as in previous figures. Figure 4.10(a) shows a space scene

where the user placed objects, changed the background, and changed the light. The light

61

(a) Aquatic Scene (b) Park

(c) Space Battle

Figure 4.9 Project created by a single participant in 50 minutes

changes brought down ambient values and changed the hue of diffuse and specular light to-

ward orange/yellow. Figure 4.10(b) is a relatively complex social scene, where there are a group

of individuals interacting, a lone individual in a dominant and awkward position of standing

on a table, and one individual resting on a couch. Figure 4.10(c) is a scene that appears to

represent a typical scenario in the Halo video game. The primary humanoid, Master Chief,

is being surrounded by enemy forces, Covenant. Figure 4.10(d) is an example of one of the

bizarre scenes created. There are oddly proportioned dogs, a human on the nose of an orca

that is coming out of the ground, some flowers, and a clownfish.

62

(a) Space Battle (b) Social

(c) Game (d) Bizzare

Figure 4.10 Scenes created by participants during 50 minute task

Discussion

The source code repository for OpenSG can be obtained at http://github.com/djkabala/

OpenSGDevMaster_Toolbox. The source code repository for the OpenSGToolbox can be ob-

tained at http://github.com/djkabala/OpenSGToolbox. The source code repository for the

KabalaEngine can be obtained at http://github.com/djkabala/KabalaEngine.

What Worked Well?

The study tasks were not too difficult because all of the users were able to complete all

of the tasks. This included the task of creating the scenes in the second section, 50 minute

task. The scenes that users created were fairly complex given the 50 minute time frame they

had to produce them. Most participants created scenes with many objects arranged logically,

http://github.com/djkabala/OpenSGDevMaster_Toolbox
http://github.com/djkabala/OpenSGDevMaster_Toolbox
http://github.com/djkabala/OpenSGToolbox
http://github.com/djkabala/KabalaEngine

63

changed lighting characteristics, and changed physical properties.

We received many encouraging remarks from users from the ”What did you find engaging

about using this software?” question of the questionnaire. Several of the users wrote that they

enjoyed creating their own scenes. There were comments about the builder providing very

rapid development, many editable parameters of objects, and that objects could collide. Users

liked being able to control the physics and lighting characteristics of the scenes.

What Did Not Work?

The written response from users indicates that there are problems with the view navigation

in the 3D view panel. This is because the navigation is using an unconstrained trackball

model. This allows rotation around the views z-axis, which is very disorienting for users. The

navigation was changed so that the camera would not roll and provided better results. There

were some users that had difficulty using the rotation manipulator. Some users indicated that

they felt uncomfortable not knowing how everything worked or having no experience with

constructing virtual environments.

Some improvements suggested by participants were: add easy cloning of scene objects,

provide some pre-defined view orientations, add basic shapes, and to include more models

including terrain. All of these suggestions can be incorporated into the Builder. Adding easy

cloning could be as simple as adding a copy/cut/paste mechanism to the Builder. Pre-defined

view orientations could be added as a menu next to each of the 3D viewports. Basic shapes can

be added to the new scene object button, there are implementations in OpenSG for creating

the shapes: sphere, box, cone, cylinder, plane, teapot, and torus. Adding more models and

terrain can be done by finding more models in 3D model repositories. The participants were

limited to the number of models available so that they would not spend the majority of their

time looking for which model to use.

64

Limitations and Future Work

The interface uses primarily a WIMPS-base style which is very useful for work on desktops,

it doesn’t have a specialized interface for using the Builder in a virtual reality system or hand-

held devices. The Builder does not have a easy user interface for dynamic relationships such as

animations, particle systems, and scripts. The KabalaEngine run-time dubugger supports this

through a generic ”expert” user interface. Currently there is not a large user community for

the KabalaEngine. The importing of assets can be cumbersome. To run a project in a virtual

reality system the system requires VR Juggler.

Acknowledgements

The authors would like to thank Achyuthan Vasanth, Daniel Guilliams, Robert Goetz, Eric

Langkamp, and David Naylor for there contributions of source code. The authors would like

to thank William Schneller, Amy Dixon, and Heidi Sinsel for their work designing the look

and feel and the KabalaEngine logo. The user interface library is released under the General

Public License version 3.

References

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., Durbin, J.,

Gossweiler, R., Koga, S., Long, C., Mallory, B., Miale, S., Monkaitis, K., Patten, J., Pierce,

J., Shochet, J., Staack, D., Stearns, B., Stoakley, R., Sturgill, C., Viega, J., White, J.,

and Williams, G. 2000. Alice: Lessons learned from building a 3d system for novices. In Conference

on Human Factors in Computing Systems: Proceedings of the SIGCHI conference on Human factors in

computing systems. –.

Lombardi, J. and Lombardi, M. 2010. Opening the Metaverse. Springer, London.

Pausch, R., Burnette, T., Capehar, A. C., Conway, M., Cosgrove, D., DeLine, R., Durbin, J.,

Gossweiler, R., Koga, S., and White, J. 1995. A brief architectural overview of alice, a rapid proto-

typing system for virtual reality. IEEE Computer Graphics and Applications, 195–203.

65

Shneiderman, B. 1987. Designing the user interface : strategies for effective human-computer-interaction.

Addison Wesley, University of Maryland, College Park.

Smith, D. A., Raab, A., Reed, D. P., and Kay, A. 2004. Croquet: a menagerie of new user interfaces. In

Second International Conference on Creating, Connecting and Collaborating through Computing. 4–11.

66

CHAPTER 5. EXAMPLE WORKS THAT USE OUR CONTRIBUTIONS

Overview

The KabalaEngine was designed to support the needs of many different types of projects.

The real-time features can be used by video game projects, Metablast is a video game that

uses the KabalaEngine. The libraries developed for OpenSG and the KabalaEngine were used

by the commercial software Quarterback Development System.

MetaBlast

The KabalaEngine has been used by the Metablast video game. Metablast is video game

that puts players in an interactive plant leaf cell. The player can move around the game

environment in a miniature bioship. Figure 5.1 is a screenshot of Metablast with the bioship

in a leaf cell. The component of the cell, organelles, can be seen surrounding the ship. This

scene uses the physics integration with OpenSG to propel the ship in a convincing fashion, the

ship also realistically collides with boundaries of the organelles. The 3D models were created in

the Autodesk Maya software and were exported to the COLLADA file format. The extension of

the OpenSG COLLADA importer allowed the same CgFX material definition that the artists

used in Maya to be replicated exactly by the engine. The back of the bioship emits bubbles,

represented with a particle system, when the ship is powering itself forward.

The Metablast video game takes advantage of all the features created for the KabalaEngine.

This includes the animations, COLLADA file importing, GUI library, Lua scripting, particle

systems, physics, sound, and video.

Figure 5.2 shows the main menu of Metablast. The main menu contains a set of buttons,

that animate a pulse effect when the mouse hovers over them. There are also background

67

Figure 5.1 Inside a Leaf Cell in the Metablast Application

components that animated fluidly to give the interface an organic feel. The user interface

was made using the graphical user interface library. The animations were created using the

animation library. Lua scripts were attached to the invocation of the buttons.

Figure 5.2 The Main Menu of the Metablast Application

Figure 5.3 shows the log menu of Metablast. The log menu in Metablast supplements

material presented in the interactive game with greater detail. The functions and descriptions

68

of important molecules, proteins, and organelles are presented. The KabalaEngine provides

support for this with the GUI, and the video playback library.

Figure 5.3 An Information Log GUI in the Metablast Application

Quarterback Development System

The Quarterback Development System (QDS) software uses OpenSG, the user interface

library, and the video playback library. The QDS software is a commercial package designed

for managing American football plays in a playbook, and playing high field of view videos

back interactively. Figure 5.4 shows playbook manager interface; the interface is using the

OpenSG user interface library described in Chapter 2. Figure 5.5 shows warping of the video

for playback. The videos are captured with a high (∼170◦ horizontal) camera. The scene

graph is used to draw geometry that the video is then drawn on using the video library. The

geometry used to render the video on is designed to remove the warping in the video caused

by the camera lens when viewed in the 3D scene.

69

Figure 5.4 The QDS Playbook Manager Interface

Figure 5.5 Warping the video playback in QDS

70

CHAPTER 6. GENERAL CONCLUSIONS

In the previous chapters we have described contributions to facilitate the authoring of

virtual reality applications. In Section 1 we laid out the research goals we strove to complete.

In Section 1 we laid out the challenges we would address to reach our research goals. We

will describe how the challenges were addressed and future research that could come from our

work. We will finish with an overview of the limitations of our work and final thoughts.

Challenges Addressed

Single GUI framework for desktops and clustered VR environments

Creating a graphical user interfaces that can be used on desktop and VR systems is difficult.

There are many mature libraries for graphical user interfaces for desktop systems, and there

are some that can be used in 3D. However, there is a need for graphical user interfaces that

can be used in both desktop and VR systems. The primary difficulty is handling clustered

architectures used by many VR systems.

In Chapter 2 we discussed our contribution of a graphical user interface library to OpenSG.

This library can be used in clustered architectures as well as desktop systems. In addition the

library supports features common to most GUI libraries. This can make creating a GUI,

or switching from another library to this one easier. The same GUI can be attached to a

foreground or in the 3D scene. This makes switching from a desktop to a distributed system

consistent and faster. The addition of reflexive event production to OpenSG facilitates the

advantages of using an event driven programming architecture. The implementation of the

OpenSG user interface library provides a straight forward method for simulating mouse events

in a VR system using a 6-DOF tracker.

71

Support for real-time features in clustered environments

There are many common features of real-time applications that are not directly supported

for clustered VR systems. In Chapter 3 we discussed the our contributions of libraries for

animations, morphs, deformable geometries, particle system, physics, sound, video, importing

assets, and scripting to OpenSG.

The animation library provides a generic approach for creating animations that can be

applied to any field of a FieldContainer in OpenSG. The particle system library can simu-

late and render complex particle phenomena using highly configurable particle generators and

particle affectors. Morphs and deformable geometries are useful contributions to OpenSG for

making complex, dynamic geometries such as using morphs for simulating mouth movements

during speech or using deformable geometries to model avatars with walking animations. The

contribution to the OpenSG COLLADA loader to handle animations, morphs, deformable ge-

ometries, and CgFX materials streamlines the process of digital asset creation in digital content

creation programs into a real-time 3D engine like the KabalaEngine. Embedding a Lua virtual

machine and creating bindings to the c++ objects of OpenSG with Lua was contributed. This

provides an easier method for creating VR applications because Lua code can be changed at

run time. Wrappers for sound, video playback, and physics were contributed. Finally a generic

GUI for editing FieldContainers at run-time was contributed to OpenSG. This can move the

definitions of data used by an OpenSG application to using the generic GUI instead of cod-

ing in c++. These contributed features have significantly increased the breadth of features

available to developers of clustered VR applications using OpenSG.

Expert UI for creating virtual environments of scenes

In Chapter 3 we discussed our contribution of the KabalaEngine, an application that can

support expert developers by moving the definition of content and behavior from compiled code

to data that is created using a graphical user interface and saved to a file. The KabalaEngine

utilizes the libraries contributed from the previously discussed challenges. The expert GUI

provides interfaces for changing the scene-graph, executing Lua code, observing errors and the

72

stack trace from Lua, and a direct manipulation interface for modifying objects in the scene

graph.

Novice UI for creating virtual environments of scenes

It is a goal of virtual reality research to make authoring virtual environments easier. Ideally,

anyone that has an idea for a virtual environment should be able to create that environment

easily.

In Chapter 4 we discussed our development of the KabalaEngine to simplify the complexities

of authoring virtual reality applications. We contributed a novice-oriented user interface to the

KabalaEngine called KabalaEngine Builder. This interface allows users to construct a project

using scene objects, backgrounds, foregrounds, camera, lights, and other scenes.

The KabalaEngine Builder interface was tested with 19 users. We found that participants

were able to finish all assigned tasks. Participants could use the interface to produce three

different complex virtual environments with 10-15 different 3D objects arranged in a meaningful

way in 50 minutes. Survey results revealed that 53% of participants would use the software

outside of work.

Outcome Concerning Research Goal

[[[The goal of this research was to develop tools and applications that support the authoring

of virtual reality applications. The tools will support development of VR applications based

on common requirements of the hardware and architecture used in VR systems. Building on

these tools we will develop an application for novice and expert users to develop virtual reality

applications using a graphical user interface. The goal of the application for novice users was

to reduce the time and technical skill required to develop VR applications.]]]

Future Research

Future work with the OpenSG user interface framework could include rendering GUI com-

ponents with 3D filling geometry or as a textured surface over non-planer geometry instead

73

of rendering the GUI over a flat planes, support for additional direct manipulation metaphors

in VR environments, through body-based gestures, and support for easier input of textual

information such as through tablets or other mobile devices.

Future work for KabalaEngine could include better management of assets using a database

backend instead of a file-base one. Future work for the KabalaEngine Builder could involve

creating an interface for dynamic behaviors. Additional studies could be made to with two

part studies where users can create projects on a desktop in the first part, and then experience

them in a virtual reality system in the second part.

Limitations

3D GUI library The described configuration for simulating the desktop mouse allows

the same user interface to be used across desktop and VR platforms with some limitations.

Mouse simulation with a 6-DOF tracker requires the user to continuously(actively) keep the

cursor in its location(cannot release the tracker, unless it is attached in some way). However,

in desktop systems a mouse controlled cursor maintains its position when the user releases the

mouse. Mouse directed input has greater precision than many 6-DOF trackers, this can make

using the interface more difficult on VR platforms.

OpenSG Support Libraries There are a number of limitations of the support libraries

for OpenSG. The following is a description of some of the most relevant. The animation

library. Morphs and deformable geometries cannot be combined. The particle system library is

implemented to be run by the CPU, extending to also have a GPU implementation can improve

performance under some common circumstances. The extensions to the COLLADA importer

do not fully implement the entire specification of the COLLADA file format, and their is no

COLLADA exporter. There are other scripting languages other than Lua that developers may

find more appropriate for their circumstances. The physics library uses OpenDynamicsEngine.

ODE is stable, but not being further developed so does not support more modern real-time

physics features such as soft-body physics.

74

KabalaEngine Expert GUI The primary limitation of the expert GUI is that it is an

expert GUI. It has a high learning curve. To truly master the use of the expert GUI users

must have a deep understanding of OpenSG and the our supporting libraries. The GUI also

suffers from some user interface design issues that more user studies could help.

KabalaEngine Novice GUI The KabalaEngine Builder provides a easy means for

novice users to modify basic aspects of a virtual environment. Support for a novice inter-

face for the advanced features we created with the OpenSG support libraries could greatly

increase the complexity of the virtual environments that could be constructed.

Final Thoughts

This research has been more difficult and time consuming than originally expected. De-

veloping general purpose libraries requires good requirement definitions, good software design,

good programming, good maintenance, and good software building tools. Sometimes complex

algorithms can interact “very strangely”, until understanding is gained, with the architecture

of dependent libraries. Because of this, it has been a tremendous learning experience about

the best practices of software design and programming. Given these hardships, the work has

been exceedingly rewarding and well worth it for me. The fact that projects such as Metablast

and even commercial software use our contributions has solidified my conviction that these

are important contributions to VR, and real-time 3D developers. I look forward to continuing

work to bring more people tools for authoring virtual reality environments.

75

APPENDIX A. NOVICE USER SURVEY

The following is the Internal Review Board approved survey used for the study conducted

for the manuscript of Chapter 4.

Exit Survey

Participant random id: ________________

Age: ___

Sex: Male / Female

What is your major/program of study: _____________________________________

Using the scale below, rate your technical expertise with computers:

Low (need
assistance for
many daily

computing tasks)

Low-Moderate
(can do most
things but

occasionally need
assistance)

Moderate (able to
complete daily

computing tasks)

Moderate-Expert
(teach others
“expert”
features)

Expert (fluent in
one or more
programming
languages)

1 2 3 4 5

Using the scale below, please rate how often you play video games:

Never Play Rarely Play Play Monthly Play Weekly Play Daily
1 2 3 4 5

----Stop here, you will complete the rest of this survey after you have completed all tasks.---

76

Exit Survey

Using the scale below, how difficult were the tasks you just completed:

Very Difficult Difficult Neutral Easy Very Easy
1 2 3 4 5

Using the scale below, could tasks be performed in a straight-forward manner?

Never Infrequently Half the time Frequently Always
1 2 3 4 5

Using the scale below, rate how engaging do you feel the virtual environment you created was:

Not at All
Realistic

Somewhat
Realistic

Neutral Realistic Very Realistic

1 2 3 4 5

Using the scale below, would you use this software outside of your job as a creative tool?

Never Rarely Monthly Weekly Daily
1 2 3 4 5

What did you find frustrating about using this software?
__
__

What did you find engaging about using this software?
__
__

Using the spectrum below, how seriously did you take these tasks?

Not Seriously at
all

Not Seriously Neutral Seriously Very Seriously

1 2 3 4 5

Please share any additional comments you may have on the back.

77

78

APPENDIX B. KABALA ENGINE BUILDER USER SURVEY RAW

DATA

The following tables are the raw data collected from the user survey listed in Appendix A

for the study conducted for the manuscript of Chapter 4.

79

Table B.1 Survey Questions

Question # Question

1 Please rate your technical expertise with computers.

2 How often do you play video games?

3 How difficult were the tasks you just completed?

4 Could tasks be performed in a straight-forward manner?

5 How engaging do you feel the virtual environment you created was?

6 Would you use this software outside of your job as a creative tool?

7 How seriously did you take these tasks?

Table B.2 Survey Results

ID date age sex major Question 1 Question 2

101 11/15/10 18 male Architecture Moderate Play Monthly

22866 11/15/10 20 male Math ED Moderate Play Weekly

45793 11/15/10 18 female English Moderate-Expert Rarely Play

48414 11/17/10 19 female Psychology Moderate Play Monthly

13276 11/17/10 19 male Business Moderate Play Daily

17215 11/16/10 25 female Computer Science Moderate Play Daily

49739 11/16/10 19 female AMD & Journalism Moderate Never Play

28398 11/16/10 18 female Computer Science Moderate-Expert Play Monthly

13382 11/18/10 18 female Psychology Moderate Never Play

15798 11/18/10 18 male Electrical Engineering Expert Play Weekly

36416 11/18/10 19 male Construction Engineering Moderate Play Weekly

10355 11/18/10 26 male Electrical Engineering Moderate-Expert Play Monthly

35684 11/19/10 18 male Psychology Moderate Play Weekly

45527 11/19/10 19 female Design Moderate Rarely Play

11487 11/30/10 18 male Biology Low-Moderate Play Weekly

35220 11/23/10 18 female Business Econ Low-Moderate Play Weekly

22001 12/1/10 19 male Aerospace Moderate Play Daily

33291 12/2/10 19 female Graphic Design Moderate Play Monthly

11324 12/3/10 19 female Horticulture Low-Moderate Rarely Play

80

Table B.3 Survey Results (continued)

ID Question 3 Question 4 Question 5 Question 6 Question 7

101 Easy Half the time Neutral Weekly Neutral

22866 Easy Half the time Somewhat Realistic Weekly Seriously

45793 Difficult Half the time Neutral Rarely Seriously

48414 Difficult Half the time Neutral Monthly Seriously

13276 Neutral Frequently Not at all realistic Rarely Seriously

17215 Difficult Half the time Neutral Weekly Very Seriously

49739 Neutral Frequently Neutral Rarely Seriously

28398 Neutral Half the time Neutral Never Not Seriously

13382 Neutral Half the time Somewhat Realistic Rarely Very Seriously

15798 Easy Frequently Realistic Monthly Seriously

36416 Very Easy Frequently Neutral Weekly Seriously

10355 Easy Always Realistic Monthly Very Seriously

35684 Easy Frequently Neutral Rarely Neutral

45527 Neutral Half the time Very Realistic Rarely Seriously

11487 Easy Frequently Somewhat Realistic Monthly Seriously

35220 Difficult Half the time Somewhat Realistic Never Very Seriously

22001 Easy Frequently Somewhat Realistic Rarely Seriously

33291 Neutral Frequently Realistic Monthly Seriously

11324 Easy Frequently Neutral Monthly Seriously

81

Table B.4 Survey Results (continued)

ID What did you find frustrating about using this software?

101 Hard to navigate (for me)

22866 The rotating mechanism using alt and the mouse was difficult to control

45793 I didn’t like that I couldn’t move things by clicking and dragging like I’m used to,

and that they only moved in one direction at a time.

48414 Not understanding how to use it fully.

13276 It took awhile to understand how to use

17215 2 axis camera maneuvering!!!! (left click) VERY FRUSTRATING!

49739 Rotating you view became a little difficult

28398 No set camera positions for views. Couldn’t add basic shapes. Didn’t have ability

to clone objects

13382 I’m not very good with virtual things, so just not knowing different tools.

15798 Occasionally I wanted to do more advanced work than the software allowed

36416 Sometimes when I wanted to move objects they would move in the opposite

direction I moved the mouse.

10355 I couldn’t create multiple objects at one time. The axis of movement on the mouse

didn’t adjust relative to camera angle when positioning an object.

35684 You couldn’t add hills or adjust the models poses, you can only transform models.

45527 It sort of would freeze up at times

11487 Wanted to add my own shapes and lines. I’m just not used to the spatial aspect of

putting the shapes in the correct place.

35220 I found the rotation and movement controls frustrating

22001 The rotate tool. Pivoting around the point in space other than the center of object.

33291 Not knowing how everything worked.

82

Table B.5 Survey Results (continued)

ID What did you find engaging about using this software?

101 Cool 3D software, fun to play with

22866 The light effect portrayed to give a more 3D feeling

45793 I enjoyed designing environments.

48414 It was interesting and unique.

13276 It created a challenge

17215 Physics, lighting, simplicity of menus

49739 Being able to control everything & create your own scene

28398 Different models

13382 It was fun to mess around with different objects & being able to create your own

environment.

15798 Very rapid development

36416 It was very easy to change camera angles and to rotate objects to get them to face

the right direction.

10355 Many parameters of objects where adjustable. Allowed free Range of creativity.

35684 the interface was easy to get used to and the transformations that are possible are

easy to learn.

45527 You can make realistic scenes

11487 The opportunities are endless and software is basic enough

35220 The ability to be able to create virtual worlds/scenes

22001 When objects collided with one another it seemed realistic.

33291 being able to zoom in and be in the image

11324 I thought creating my own scenes was fun.

Table B.6 Survey Results (continued)

ID Please share any additional comments you may have.

28398 I think it has potential, it’s just still very basic at this point.

15798 This will be fantastic as more features are added, bugs are fixed, and UI is tweaked.

35684 Make the camera easier to see once selected maybe give it a model of some sort it

was hard for me to locate at first

11324 I enjoy the program and even though I am usually bad with technology I found it pretty

simple to use.

83

APPENDIX C. NOVICE USER TASKS

The following is the task document used by study participants for the study conducted for

the manuscript of Chapter 4.

Kabala Engine: Overview
The software you are using is called the KabalaEngine. You will be using the WorldBuilder of
the KabalaEngine to construct scenes in a 3D environment. The WorldBuilder has four primary
areas for editing.

WorldBuilder

3D Scene View
3D view of the selected scene.
You can navigate in this view, and
manipulate objects in the scene.

Editor view
Holds a view of the
editor for the component
of the scene selected for
editing.

Scene overview
Holds a view of the components
of the current scene that can be
edited.

Project view
Holds a view of the
currently created
scenes in the
project.

84

Task: Navigation

For this task you will learn how to navigate in the 3D editor.

To do this you will need to use the controls for moving the camera.
Rotate: Press and hold the left mouse button and move the mouse.
Move: Press and hold the right mouse button and move the mouse.
Zoom: Move the mouse scroll wheel forwards and backwards.

Focus on specific object: You can focus the camera on a specific object in the scene by
left clicking on the object to select it, and then pressing the Focus tool. The Focus tool
is above the 3D viewing region and looks like an eye.

Tasks:
1. Rotate the camera 180 degrees around the doughnut shape.
2. Move the camera through the center hole of the doughnut.
3. Rotate the camera 180 degrees
4. Move the camera back through the center hole of the doughnut.
5. Finally, bring the whole scene back into view by using the focus tool to focus on

the green ground.

85

Task: Arrange Objects in Scene

For this task you will learn how to arrange objects in the 3D editor. You may need to use the
navigation techniques learned earlier to find a camera location that makes the arranging easier.

To do this you will need to use the controls for moving scene objects.
Select a scene object: Left click on an object in the scene. This will select the object.

Once a scene object is selected there will be a red, green, and blue manipulator handle.
You can use the manipulator handle to move, rotate, or scale the scene object.

Move: Select a scene object. Next select the move tool. Now you can click and move
the scene object.
Rotate: Select a scene object. Next select the rotate tool. Now you can click and rotate
the scene object.
Scale: Select a scene object. Next select the scale tool. Now you can click and scale the
scene object.

Alternate method: You can also move, rotate, or scale a scene object by selecting the
scene object and then inputting the values directly in the editing area on the left of the
interface.

Tasks:
• Move the doughnut to the left of the cone
• Move the box to the left of the doughnut
• Point the tip of the cone toward the doughnut.

Move, Rotate, and Scale tools

86

Task: Scene Creation

For this task you will learn how to create and edit various aspects of a scene.
1. Create a new scene.
2. Create four new scene objects and place them in the scene such that they are not

colliding.
3. Change the background color of the scene.
4. Change the location of the camera in the scene.
5. Change the ambient, diffuse, and specular colors of the light in the scene.

Create new scene

Scene component editor area

Scene component
selection area

87

Task: Navigation in player mode

For this task you will use the player mode of the application.

Controls for player mode
Start Player: Press the play button. This button looks like a triangle and is near the top
of the interface.

Exit the player: Press the escape key to exit from the player mode back to the
WorldBuilder.

Rotate: Left click and pull to rotate your view.
Move: Use the arrow keys to move forward,backward, left, or right.

Tasks:
1. Start the player mode
2. Move around the scene using the navigation controls
3. Move around so that you run into the box, cone, and doughnut shapes
4. Exit the player mode back to the WorldBuilder

Start player mode

88

Task: Change Physical properties of scene objects

For this task you will use the interface to change the physical properties of scene objects.

Tasks:
• Create a new scene.
• Add a new scene object to the scene

◦ Make the scene object collidable and effected by gravity
◦ Use the player mode to see if this was successful

• Make the doughnut, cone, and box collidable and effected by gravity.
• Arrange the objects such that:

◦ The Box is at the bottom
◦ The flat end of the cone will fall onto the box
◦ The hole of the doughnut will fall through the point of the cone
◦ Move the camera so that it is viewing your arrangement

• Use the player mode to see if you were successful

89

Task: Create 3 Scene Project

For this task you will freely use the interface for 50 minutes to create a new project.
• Create at least 3 scenes
• For each scene attempt to create one of the following scenarios
• Put 10-20 scene objects in each scene

Scenarios
• Space Battle
• Indoor social event
• Vehicle race somewhere famous
• Sporting event
• Bizarre world
• A comical situation
• Historical event
• Other

90

91

APPENDIX D. KABALA ENGINE BUILDER INTERFACE SKETCHES

The following figures are the design sketches for the KabalaEngine Builder interface describe

in the manuscript of Chapter 4.

92

Figure D.1 Version 1

Figure D.2 Version 2

93

Figure D.3 Version 3

Figure D.4 Version 4/Final

	2011
	Developing virtual reality applications: The design and evaluation of virtual reality development tools for novice users.
	David J. Kabala
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. GENERAL INTRODUCTION
	Motivation
	Research Goal
	Dissertation Overview
	Challenges
	Single GUI framework for desktops and clustered VR environments
	Support for real-time 3D application features in clustered environments
	Expert user interface for creating virtual environments of scenes
	Novice user interface for creating virtual environments

	Background
	Immersive Virtual Reality
	VR Systems
	Software Licenses

	References

	2. OPENSGTOOLBOX: A TOOLKIT FOR EFFICIENT DEVELOPMENT OF 3D USER INTERFACES FOR VIRTUAL REALITY APPLICATIONS
	Abstract
	Introduction
	Background
	VR System Architectures
	Scene Graphs

	Related Work
	GUIs
	VR Toolkits
	Game Engines
	Scene graphs

	Implementation
	OpenSGToolbox with scene graph
	Event-driven programming
	Reflexive event production definition
	Look-and-feel
	Simulation of WIMP-like input in 6-DOF tracker based systems.
	Cross-platform
	Limitations

	Sample Applications
	Conclusion And Future Work
	Acknowledgments
	References

	3. KABALA ENGINE: A VIRTU AL ENVIRONMENTS AUTHORING FRAMEWORK FOR NOVICE USERS
	Abstract
	Introduction
	Related Work
	Modules
	Animation
	Morphs and Deformable Geometries
	Advanced Particle System
	Importing Digital Assets
	Scripting Language
	Sound
	Video
	Physics
	User Interface
	Generic FieldContainer GUI

	KabalaEngine Architecture and Interfaces
	Project Player
	Project, Scenes, SceneObjects, Effects, Behaviors
	Control Loop

	Run-time debugger
	Content View Panel
	Scene graph GUI tree
	Utility Tab Panel
	Main Menubar

	Conclusions
	Future Work
	Acknowledgements
	References

	4. CREATING A GRAPHIC USER INTERFACE FOR VIRTUAL REALITY AUTHORING: AN OVERVIEW AND ANALYSIS OF THE KABALAENGINE WORLD BUILDER
	Abstract
	Introduction
	Related Work
	Design Principles
	KabaleEngine Builder Interface
	Materials and Methods
	Overview of the Study
	Apparatus
	Procedure
	Measures
	Participants

	Results
	Created Users Projects
	Discussion
	What Worked Well?
	What Did Not Work?
	Limitations and Future Work

	Acknowledgements
	References

	5. EXAMPLE WORKS THAT USE OUR CONTRIBUTIONS
	Overview
	MetaBlast
	Quarterback Development System

	6. GENERAL CONCLUSIONS
	Challenges Addressed
	Single GUI framework for desktops and clustered VR environments
	Support for real-time features in clustered environments
	Expert UI for creating virtual environments of scenes
	Novice UI for creating virtual environments of scenes

	Outcome Concerning Research Goal
	Future Research
	Limitations

	Final Thoughts

	A. NOVICE USER SURVEY
	B. KABALA ENGINE BUILDER USER SURVEY RAW DATA
	C. NOVICE USER TASKS
	D. KABALA ENGINE BUILDER INTERFACE SKETCHES

